
CENG328 Operating Systems

Laboratory Chapter 7

1 File System

Unix and Linux based operating systems use specific filesystems (ext2 / ext3 / ext4, xfs, btrfs, etc) for
storing files, directories and other filesystem objects such as links, pipes and sockets. These filesystems
usually store information such as filename, size, inode number, owning user / group info, access modes,
timestamps, etc. When listing files with ls command, these different file types can be recognized by the
first character next to the permissions:

• Regular File: Stores data (text, image, audio...) that can be read/written by programs. Denoted
by “-” sign.

• Directory: A data structure that stores other files, directories, etc. Denoted by “d” sign.

• Link: A softlink (symlink) is a file that acts as a pointer to another file. Denoted by “l” sign.

• Socket: A filesystem-level IPC method to establish communication between processes. Denoted
by “s” sign.

• Pipe: A filesystem-level IPC method to establish communication between processes. Denoted by
“p” sign.

• Character device: A device which the driver communicates with single characters. Denoted by
“c” sign.

• Block device: A device which the driver communicates with blocks of data. Denoted by “b” sign.

$ ls

drwxrwxr-x 2 user user 4096 May 3 18:29 backups

lrwxrwxrwx 1 user user 6 May 3 18:29 list -> list.1

-rw-rw-r-- 1 user user 132 May 3 18:29 list.0

-rw-rw-r-- 1 user user 218 May 3 18:29 list.1

-rw-rw-r-- 1 user user 63 May 3 18:29 list.2

brw-rw---- 1 root disk 7, 6 Apr 24 10:11 sda1

prw-rw-r-- 1 user user 0 May 3 18:29 somepipe

srwxrwxr-x 1 user user 0 May 3 18:28 somesocket

crw------- 1 root root 10, 55 Apr 24 10:12 vboxdrv

Information stored about a file by the filesystem can be queried by “stat” command:

$ stat list.0

File: ’list.0’

Size: 132 Blocks: 24 IO Block: 4096 regular file

Device: 2fh/47d Inode: 40894950 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1000/ user) Gid: (1000/ user)

Access: 2018-05-03 18:29:09.138309639 +0300

Modify: 2018-05-03 18:29:08.862312844 +0300

Change: 2018-05-03 18:29:08.862312844 +0300

Birth: -

1

$ stat list

File: ’list’ -> ’list.1’

Size: 6 Blocks: 8 IO Block: 4096 symbolic link

Device: 2fh/47d Inode: 40894965 Links: 1

Access: (0777/lrwxrwxrwx) Uid: (1000/ user) Gid: (1000/ user)

Access: 2018-05-03 18:29:30.642060416 +0300

Modify: 2018-05-03 18:29:30.642060416 +0300

Change: 2018-05-03 18:29:30.642060416 +0300

Birth: -

2 Programming

You may use stat() system call to obtain info about files in C. Study the following code (fs1.c):

#include <stdio.h>

#include <sys/types.h>

#include <dirent.h>

#include <unistd.h>

#include <sys/stat.h>

#include <string.h>

int main(int argc, char **argv) {

struct stat statbuf;

if (argc != 2) {

printf("Usage: %s \e[4mFILENAME\n", argv[0]);

return -1;

}

stat(argv[1], &statbuf);

printf("Filename: %s\n", argv[1]);

if (S_ISREG(statbuf.st_mode))

printf("Type: regular file\n");

else if (S_ISDIR(statbuf.st_mode))

printf("Type: directory\n");

else if (S_ISLNK(statbuf.st_mode))

printf("Type: link\n");

else if (S_ISFIFO(statbuf.st_mode))

printf("Type: pipe\n");

else if (S_ISSOCK(statbuf.st_mode))

printf("Type: socket\n");

else if (S_ISCHR(statbuf.st_mode))

printf("Type: character device\n");

else if (S_ISBLK(statbuf.st_mode))

printf("Type: block device\n");

printf("Inode: %lu\n", statbuf.st_ino);

printf("Size: %ld\n", statbuf.st_size);

printf("UID: %d\n", statbuf.st_uid);

printf("Last Accessed at: %ld\n", statbuf.st_atim.tv_sec);

printf("Permissions: %o\n", statbuf.st_mode & 0777);

if (statbuf.st_mode & S_IRUSR)

printf("File has user read permission\n");

if (statbuf.st_mode & S_IWGRP)

printf("File has group write permission\n");

if (statbuf.st_mode & S_IXOTH)

printf("File has others execution permission\n");

return 0;

}

2

stat() system call queries the file given as the input parameter and fills a struct with information about
this file. Some of the info that can be displayed are omitted in this code, you may learn more about them
using “man 2 stat”.

So far you have used “cd” and “ls” commands to traverse directories and list their contents. Directories
can be traversed in C as well. Study the code below (fs2.c):

#include <stdio.h>

#include <sys/types.h>

#include <dirent.h>

#include <unistd.h>

#include <sys/stat.h>

#include <string.h>

void traverse(char*, int);

int main(int argc, char **argv) {

if (argc != 2) {

printf("Usage: %s \e[4mDIRNAME\n", argv[0]);

return -1;

}

// call the traverse function with the given directory name

printf("%s/\n", argv[1]);

traverse(argv[1], 4);

return 0;

}

void traverse(char* dirname, int depth) {

DIR* dp;

struct dirent* entry;

struct stat statbuf;

// open the directory structure and go in

if ((dp = opendir(dirname)) == NULL) {

printf("No such directory: %s\n", dirname);

return;

}

chdir(dirname);

// read all files and directories within

while ((entry = readdir(dp)) != NULL) {

lstat(entry->d_name, &statbuf);

// if the chosen item is a directory, print its name

// and recursively travel into it

if (S_ISDIR(statbuf.st_mode)) {

if (strcmp(entry->d_name, ".") != 0

&& strcmp(entry->d_name, "..") != 0) {

printf("%*s%s/ (%ld bytes, mode %o)\n", depth, " ",

entry->d_name, statbuf.st_size, statbuf.st_mode & 0777);

traverse(entry->d_name, depth + 4);

}

} else

printf("%*s%s (%ld bytes, mode %o)\n", depth, " ", entry->d_name,

statbuf.st_size, statbuf.st_mode & 0777);

}

3

// fs2.c continued

// go back to the parent directory and close directory structure

chdir("..");

closedir(dp);

}

Compile this program and run it like “./fs1 .”, “./fs1 /home/”, “./fs1 /bin/”, etc. A list of all
directories and files that reside under the directory you have specified in the command line argument
should appear on your screen, along with their sizes and their access modes.

In order to get a list all files and directories in a directory, you must first open the directory structure
with opendir(), it returns a pointer to the structure. Then, each time readdir() is called, a pointer
to the next file/directory is returned. At this point, stat() or lstat() system calls can be used to fill a
structure, which contains various information (inode number, mode, user id, size, etc) about the selected
file/directory. readdir() returns NULL when there are no more files/directories left in the open directory.
When this happens, closedir() can be called to close the directory structure and free the directory
pointer.

3 Exercises

1. Read man pages for the following library functions: stat (2), opendir, readdir, closedir, chdir.

2. Red man page for stat (3) command.

3. Modify fs2.c such that inode numbers are printed for each file and directory as well. In order to
accomplish this, you may refer to man page of stat (2) system call by running “man 2 stat”.

4

