
CENG328 Operating Systems

Laboratory Chapter 5

1 Process Synchronization

When working on shared resources with multiple threads, execution of these threads must be con-
trolled/synchronized in order to prevent errors in program execution due to uncontrolled access to these
resources. In order to get a better understanding of this concept, compile and try executing the program
below (sync1.c) first:

#include <stdio.h>

#include <pthread.h>

int sum = 0;

void* addFun(void* arg) {

int i;

for (i = 0; i < 1000000; ++i)

sum += 1;

return NULL;

}

int main() {

int i;

pthread_t threads[10];

for (i = 0; i < 10; ++i)

pthread_create(&threads[i], NULL, addFun, NULL);

for (i = 0; i < 10; ++i)

pthread_join(threads[i], NULL);

printf("Result is %d.\n", sum);

return 0;

}

As you can see, this is a program which attempts to count up to 10.000.000. This is achieved by creating
10 threads and letting each thread to increase value of a shared variable one by one 1 million times. But
whenever this program gets executed, it always generates different incorrect results:

Result is 2276886.

Result is 3940960.

Result is 3140907.

Result is 1860179.

Result is 2291528.

...

1



This happens because the variable that gets modified by each thread is not mutually exclusive; all threads
may read and modify value of this variable arbitrarily. In order to fix this error, a “mutual exclusion”
mechanism must be introduced into the code (sync2.c):

#include <stdio.h>

#include <pthread.h>

#include <semaphore.h>

int sum = 0;

sem_t mutex;

void* addFun(void* arg) {

int i;

for (i = 0; i < 1000000; ++i) {

sem_wait(&mutex); // lock critical region

sum += 1;

sem_post(&mutex); // unlock critical region

}

return NULL;

}

int main() {

int i;

pthread_t threads[10];

sem_init(&mutex, 0, 1); // semaphore initialization

for (i = 0; i < 10; ++i)

pthread_create(&threads[i], NULL, addFun, NULL);

for (i = 0; i < 10; ++i)

pthread_join(threads[i], NULL);

printf("Result is %d\n", sum);

sem_destroy(&mutex); // destroy semaphore

return 0;

}

“sem t” is a special type of variable (semaphore) that may only hold the values 0 or above. sem init is
the function which sets the initial value of a given semaphore. sem post is the function which increases
value of a semaphore by one and sem wait is the function that decreases value of a semaphore by one.
sem destroy destroys a given semaphore.

Note that sem post may also be referred as signal in the lecture and the textbook.

If value of a semaphore is already 0 and sem wait is used on this semaphore, its value can no longer be
decreased and the running thread gets blocked until an another process or thread increases the value
of this semaphore.

By setting initial value of the mutex variable to 1, we have effectively designed a critical region in this
code which may be accessed by only one thread at a given time. It is still unknown which thread gets
the privilege by the CPU to execute its sem wait function but when one thread gets to execute it, all
other nine threads will wait until a sem post is issued and value of the semaphore is restored to 1. So,
no matter how many times you execute the second program, you will always get the correct result now.

2



2 Exercises

1. Read man pages for the following library functions: sem init, sem post, sem wait, sem destroy.

2. Open the second question in Labwork 5. Solve it using only one global variable for the result with
the help of a semaphore now.

3


