
CENG328 Operating Systems

Laboratory Chapter 4

1 Introduction to Threads

Threads, also known as “lightweight processes”, helps achieving parallelization by executing different
or the same instruction sequences in the scope of the same process concurrently. The following figure
demonstrates the difference between multiple processes and multiple threads:

Figure 1: Multiple Processes vs Multiple Threads

The following code (th1.c) demonstrates how to create 2 new threads and assign them different tasks to
perform:

#include <stdio.h>

#include <pthread.h>

void* threadFun1(void* arg) {

while(1)

printf("1");

}

void* threadFun2(void* arg) {

while(1)

printf("0");

}

int main() {

pthread_t thread1, thread2;

pthread_create(&thread1, NULL, threadFun1, NULL);

pthread_create(&thread2, NULL, threadFun2, NULL);

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

return 0;

}

1



In addition to including pthread header in the code, all pthread programs must be compiled against
pthread library with gcc as well:

gcc th1.c -o th1 -lpthread

When executed, the main thread (which has already been created and started by the hosting process)
creates two additional threads and tells them to execute the functions threadFun1 and threadFun2 re-
spectively. You may stop the program using Ctrl + C.

pthread create() function creates a new thread. It takes 4 parameters:

1. thread variable - the newly created thread will be attached to this variable.

2. thread attributes - thread attributes such as scope, scheduling, etc can be defined here. If default
attributes are to be used, this variable can be NULL.

3. thread function - the created thread will execute the instructions stored in this function.

4. thread arguments - Function arguments can be defined here. If no arguments will be used, this
variable can be NULL.

pthread join() function blocks until the related thread is terminated, before continuing execution. If not
used, all running threads will be terminated altogether when the main thread has finiseed. Its parameters
are:

1. thread variable - which thread to be waited for.

2. thread return code - to trace how the thread has terminated. If return code is unimportant for
your code, it can be NULL.

Since all threads reside in the same process, all of them will have the same process id but they still will
have different thread id’s (th2.c):

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

void* threadFun(void* arg) {

printf("Thread %u - pid = %d\n", pthread_self(), getpid());

}

int main() {

pthread_t threads[5];

int i;

for (i = 0; i < 5; ++i)

pthread_create(&threads[i], NULL, threadFun, NULL);

for (i = 0; i < 5; ++i)

pthread_join(threads[i], 0);

return 0;

}

2



The 4th parameter of pthread create function takes address of a variable, therefore instead of copying
seperate values to each thread, all threads will access the same value stored at that address. This may
sometimes cause unwanted errors. Take a look at the code below (th3.c). When you run it, you will see
some of the threads report the same or different values. This is because the value stored at the address
may be accessed, updated and printed by more than one threads simultaneously.

#include <stdio.h>

#include <pthread.h>

void* threadFun(void* arg) {

int a = *((int*) arg);

printf("i = %d\n", a);

}

int main() {

pthread_t threads[50];

int i;

for (i = 0; i < 50; ++i) {

pthread_create(&threads[i], NULL, threadFun, &i);

}

for (i = 0; i < 50; ++i) {

pthread_join(threads[i], NULL);

}

return 0;

}

For this reason, seperate variables should be passed as function parameters as required (th4.c):

#include <stdio.h>

#include <pthread.h>

void* threadFun(void* arg) {

int a = *((int*) arg);

printf("id = %d\n", a);

}

int main() {

pthread_t threads[50];

int i, ids[50];

for (i = 0; i < 50; ++i) {

ids[i] = i;

pthread_create(&threads[i], NULL, threadFun, &ids[i]);

}

for (i = 0; i < 50; ++i) {

pthread_join(threads[i], NULL);

}

return 0;

}

3



If more than one variable is needed, they must be encapsulated in a struct and that struct must be used
as the parameter instead (th5.c):

#include <stdio.h>

#include <pthread.h>

typedef struct _course {

char* code;

char* name;

} COURSE;

void* threadFun(void* arg) {

COURSE c = *((COURSE*) arg);

printf("Welcome to %s - %s\n", c.code, c.name);

}

int main() {

pthread_t threads[2];

COURSE courses[2];

int i;

courses[0].code = "CENG328";

courses[0].name = "Operating Systems";

courses[1].code = "CENG501";

courses[1].name = "Advanced Operating Systems";

for (i = 0; i < 2; ++i)

pthread_create(&threads[i], NULL, threadFun, &courses[i]);

for (i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);

return 0;

}

2 Exercises

1. Read man pages for the following library functions: pthread create, pthread self, pthread join.

2. Modify th1.c such that both threads stop after printing 50 integers.

3. Remove pthread join lines in th1.c to observe the importance of this function.

4


