
5/17/2018

1

File System Implementation

11.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

11.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage

(disks)

 File system organized into layers

 File control block – storage structure

consisting of information about a file

11.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Layered File System

11.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A Typical File Control Block

11.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

In-Memory File System Structures

 The following figure illustrates the

necessary file system structures provided

by the operating systems.

 Figure 12-3(a) refers to opening a file.

 Figure 12-3(b) refers to reading a file.

5/17/2018

2

11.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

In-Memory File System Structures

File Open

File read

11.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual File Systems

 Virtual File Systems (VFS) provide an object-

oriented way of implementing file systems.

 VFS allows the same system call interface (the

API) to be used for different types of file systems.

 The API is to the VFS interface, rather than any

specific type of file system.

11.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of Virtual File System

11.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Directory Implementation

 Linear list of file names with pointer to the data blocks.

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure.

 decreases directory search time

 collisions – situations where two file names hash to the same

location

 fixed size

11.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File Allocation Methods

 An allocation method refers to how disk blocks are allocated for

files:

 Contiguous allocation

 Linked allocation

 Indexed allocation

11.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the disk

 Simple – only starting location (block #) and length (number

of blocks) are required

 Random access

 Wasteful of space (dynamic storage-allocation problem)

 Files cannot grow

5/17/2018

3

11.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation

 Mapping from logical to physical

LA/512

Q

R

Block to be accessed = Q + starting address

Displacement into block = R

11.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation of Disk Space

11.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Extent-Based Systems

 Many newer file systems (I.e. Veritas File System)

use a modified contiguous allocation scheme

 Extent-based file systems allocate disk blocks in

extents

 An extent is a contiguous block of disks

 Extents are allocated, as required

 A file consists of one or more extents.

11.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked Allocation

 Simple – need only starting address

 Free-space management system – no waste of space

 No random access

 Mapping

Block to be accessed is the Qth block in the linked chain of

blocks representing the file.

Displacement into block = R

Example: File-allocation table (FAT) – disk-space allocation used by

MS-DOS and OS/2.

LA/511

Q

R

11.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked Allocation

11.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

File-Allocation Table (MSDOS, OS/2)

5/17/2018

4

11.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation

 Brings all pointers together into the index block.

 Logical view.

index table

11.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Indexed Allocation

11.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation (Cont.)

 Random access, using Index Table

 Dynamic access without external fragmentation, but have
overhead of index block.

 Mapping from logical to physical in a file of maximum size of 256K
words and block size of 512 words. We need only 1 block for
index table.

LA/512

Q

R

Q = displacement into index table

R = displacement into block

11.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Multi-level Indexed Allocation – Mapping (Cont.)



outer-index

index table file

11.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Combined Scheme: UNIX (4K bytes per block)

11.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free Reading

From this slide onwards is free reading

material

5/17/2018

5

11.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free-Space Management

 Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =



 0  block[i] free

1  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

Offset

11.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

 Easy to get contiguous files

 Linked list (free list)

 Cannot get contiguous space easily

 No waste of space

11.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free-Space Management (Cont.)

 Need to protect:

 Pointer to free list

 Bit map

Must be kept on disk

Copy in memory and disk may differ

– Used method:

» Set bit[i] = 1 in disk

» Allocate block[i]

» Set bit[i] = 1 in memory

11.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Directory Implementation

 Linear list of file names with pointer to the data

blocks

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure

 decreases directory search time

 collisions – situations where two file names

hash to the same location

 fixed size

11.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked Free Space List on Disk

11.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently

used blocks

 free-behind and read-ahead – techniques to optimize

sequential access

 improve PC performance by dedicating section of memory as

virtual disk, or RAM disk

5/17/2018

6

11.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Cache

A page cache caches pages rather

than disk blocks using virtual memory

techniques

Memory-mapped I/O uses a page

cache

Routine I/O through the file system

uses the buffer (disk) cache

11.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

I/O Without a Unified Buffer Cache

11.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Unified Buffer Cache

A unified buffer cache uses the

same page cache to cache both

memory-mapped pages and

ordinary file system I/O

11.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

I/O Using a Unified Buffer Cache

11.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Recovery

 Consistency checking – compares data in

directory structure with data blocks on disk,

and tries to fix inconsistencies

 Use system programs to back up data

from disk to another storage device (floppy

disk, magnetic tape, other magnetic disk,

optical)

 Recover lost file or disk by restoring data

from backup

11.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Log Structured File Systems

 Log structured (or journaling) file systems record each

update to the file system as a transaction

 All transactions are written to a log

 A transaction is considered committed once it is

written to the log

 However, the file system may not yet be updated

 The transactions in the log are asynchronously written to

the file system

 When the file system is modified, the transaction is

removed from the log

 If the file system crashes, all remaining transactions in the

log must still be performed

5/17/2018

7

11.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Sun Network File System (NFS)

 An implementation and a specification of a

software system for accessing remote files

across LANs (or WANs)

 The implementation is part of the Solaris

and SunOS operating systems running on

Sun workstations using an unreliable

datagram protocol (UDP/IP protocol and

Ethernet

11.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS (Cont.)

 Interconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing among
these file systems in a transparent manner

 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

 Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided

 Files in the remote directory can then be accessed in a
transparent manner

 Subject to access-rights accreditation, potentially any file system
(or directory within a file system), can be mounted remotely on top
of any local directory

11.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment

of different machines, operating systems, and network

architectures; the NFS specifications independent of these

media

 This independence is achieved through the use of RPC

primitives built on top of an External Data Representation

(XDR) protocol used between two implementation-

independent interfaces

 The NFS specification distinguishes between the services

provided by a mount mechanism and the actual remote-file-

access services

11.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Three Independent File Systems

11.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Mounting in NFS

Mounts Cascading mounts

11.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Mount Protocol

 Establishes initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted and

name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded to

mount server running on server machine

 Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to

mount them

 Following a mount request that conforms to its export list, the server

returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to identify

the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not affect

the server side

5/17/2018

8

11.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Protocol

 Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

 searching for a file within a directory

 reading a set of directory entries

 manipulating links and directories

 accessing file attributes

 reading and writing files

 NFS servers are stateless; each request has to provide a full set of
arguments

(NFS V4 is just coming available – very different, stateful)

 Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

 The NFS protocol does not provide concurrency-control
mechanisms

11.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read, write, and

close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from

remote ones, and local files are further distinguished according to

their file-system types

 The VFS activates file-system-specific operations to handle

local requests according to their file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

 Implements the NFS protocol

11.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of NFS Architecture

11.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Path-Name Translation

 Performed by breaking the path into

component names and performing a

separate NFS lookup call for every pair of

component name and directory vnode

 To make lookup faster, a directory name

lookup cache on the client’s side holds the

vnodes for remote directory names

11.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX system

calls and the NFS protocol RPCs (except opening and closing files)

 NFS adheres to the remote-service paradigm, but employs

buffering and caching techniques for the sake of performance

 File-blocks cache – when a file is opened, the kernel checks with

the remote server whether to fetch or revalidate the cached

attributes

 Cached file blocks are used only if the corresponding cached

attributes are up to date

 File-attribute cache – the attribute cache is updated whenever new

attributes arrive from the server

 Clients do not free delayed-write blocks until the server confirms

that the data have been written to disk

End

