Memory Management
Part 1l

» Virtual memory

« Paging and page replacement

» Modeling page replacement algorithms
» Design issues for paging systems

» Implementation issues

» Segmentation

Operating Systems

Basic Idea of Virtual Memory

Basic idea behind the virtual memory is that the
combined size of programs, data, and stacks may easily
exceed the amount of physical memory available.
 This is more true in multiprogramming environment.
The operating system uses physical memory together
with secondary storage to solve this problem.

« Virtual Memory seems to be a state of art universal
method. Processes are allocated physical memory at a
point they need based on the availability.

Operating Systems

Page Faulting

» During the execution, a reference to virtual
address is first checked if it has already
been mapped to a physical address.

» Ifnot it is said ta cause a “page fault”.

Operating Systems

Virtual Memory (VM)

Basic idea

« Paging
» Demand Paging and its performance
» Page Replacement and Page-

Replacement Algorithms
Allocation of Frames
Thrashing problem

Segmentation: pure segmentation,
Segmentation with paging

Operating Systems

Paging Concept in Virtual Memory

Logical memory is divided into blocks of same
size called pages.

Physical memory is divided into fixed-sized
blocks called frames (size is power of 2,
between 512 bytes and 8192 bytes).

Pages are needed to be mapped to frames during
the execution.

To run a program of size n pages, need to use n
frames.

OS need to manage the page-to-frame mapping
dynamically.

Operating Systems

Page Fault Algorithm-1

If there is a reference to a page (every
address reference is a reference to a page),
— It will cause a trap to OS, which will in turn
cause “page fault” processing.
Page fault processing:
— Find an empty frame
— Swap page into that frame
— Reset page’s validation bit.

— Give control back to the process causing the
trap (restart instruction)

Operating Systems

5/10/2018

Page Fault-2

» If there is no free page, OS starts page
replacement procedure:

— Page replacement: find some page in the memory,
the one which is not really in use, to replace.

— Conduct the swap operations.
— For performance reasons the algorithm used
should result in minimum number of page faults.

— Itis possible that the same page is brought into
memory several times, during execution of a
program...

Operating Systems

Address Translation-2

» The base address is the address of the
frame to which the page is mapped.

— if the virtual page is already in the memory,
the address mapping is straight forward and
very efficient as it is done in firmware.

« If the page is not in the memory, first a
page fault occurs, after which the address
mapping is as before.

Operating Systems

Page-frame mapping: Example

Virtual
address
R space
The relation between sok-6aK [X
virtual addresses seiceak| | }Winal peje
) 52K-56K | X
and phy5|cal 48K-52K [X
memory address: diciK] 7
40K-44K X Physical
page table and 36K-40K [5 e
memory 32K-36K X address
28K-32K X 28K-32K
24K-28K X 24K-28K
20K-24K 3 20K-24K
16K-20K 4 16K-20K
12K-16K 0 12K-16K
8K-12K 6 8K-12K
4K-8K 1 4K-8K
K4k [2 N 0Kk
Operating Systems Page frame

5/10/2018

Address Translation-1

* The virtual address generated during the
execution is composed of two parts:

— page number (p)

- used as an index into a page table which contains
base address of the page in physical memory

(frame).
— Page offset (d)

« combined with base address to define the
physical memory address to be referenced.

Operating Systems

Virtual address and MMU-Memory Management Unit

The CPU sends virtual
cPU addresses to the MMU
package
CPU >
/ Memory M Disk
P management amary. controller
unit
3 L 1.

The MMU sends physical
addresses to the memory

us

The position and function of the MMU

Operating Systems

MMU address mapping

i
[[EEEEELEREEIEE]

12-tit ofset

-~ Prasent
Virtual page = 21s used
a8 an indax Into e,
P table

[e[eTiTe[o]e]e]o[o]eTe]o]e] TeTe]
L]

Cutgoing
physical

address
(24580)

incorming
rtual

s
(8196}

u Internal operation GFNIMtT with 16 4 KB pages .

Implementation of Page Table

Page table is kept in main memory.

Page-table base register (PTBR) points to the page table.
Page-table length register (PRLR) indicates size of the
page table.

In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
registers or translation look-aside buffers (TLBs)

Operating Systems

Associative Register

« Valid-invalid bit attached to each entry in
the page table:

— “valid” indicates that the associated page is
in the process’ logical address space, and is
thus a legal page.

— “invalid” indicates that the page is not in the
process’ logical address space.

Operating Systems

Two-level page tables

Second-level page tables

Top-level
page table

LERERRR]

IRERRRR]

« 32 bit address with 2 page table fields

Operating Systems

13

15

17

5/10/2018

Associative Register

* Associative registers — parallel search
e #

Page # ram

« Address translation (A", A"")
— If A” is in associative register, get frame #.

— Otherwise get frame # from page table in the
main memory

Operating Systems

Effective Access Time

« Associative Lookup = ¢ time unit
» Assume memory cycle time is 1 microsecond

« Hit ratio — percentage of times that a page number
is found in the associative memory = o

« Effective Access Time (EAT)
EAT = f(PageTableAccessTime,MemoryAccessTime)

EAT=(1+¢)a+(2+e)(l-a)
=2+e-a

Operating Systems

Multilevel Paging and Performance

» Since each level is stored as a separate table in
memory, mapping a logical address to a physical
one may take four memory accesses.

« Even though time needed for one memory access is
theoretically four times as much, caching permits
performance to remain reasonable.

Operating Systems

Multilevel Paging and Performance: Example

« Cache hit rate of 98 percent yields:
mem.access=100 nsec, cache.access=20 nsec,
effective access time = 0.98 x (100+20) + 0.02 x
(400+20)
= 126 nanoseconds.

which is only a 26 percent slowdown in memory
access time.

TLBs — Translation Lookaside Buffers

Operating Systems

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

A TLB to speed up paging

Operating Systems

Inverted Page Table Architecture

logical

page table

Operating Systems

19

21

23

5/10/2018

Page Tables Entry Format

Caching
disabled Modified Present/absent

/

/ /
l | I I Page frame number
\ A

Referenced Protection

Typical page table entry

Operating Systems

Inverted Page Table

» One entry for each real page of memory.

« Entry consists of the virtual address of the page
stored in that real memory location, with
information about the process that owns that page.

» Decreases memory needed to store each page

table, but increases time needed to search the table

when a page reference occurs.

Use hash table to limit the search to one — or at

most a few — page-table entries.

Operating Systems

Inverted Page Tables

Traditional page

tabl

le with an entry

for each of the 252

pages

262 -

256-MB physical
memory has 216
4-KB page frames Hash table
2181 216 4 ——T——T1—
B B £ B
——T
I 0 DI
Indexed Indexed
by virtual by hash on Virtual Page
page virtual page page frame

Comparison of a traditional page table with an inverted page table

Operating Systems
24

Shared Pages

 Shared code

— One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window
systems).

— Shared code must appear in same location in the logical
address space of all processes.

Private code and data

— Each process keeps a separate copy of the code and
data.

— The pages for the private code and data can appear
anywhere in the logical address space.

Operating Systems
25

DEMAND PAGING

Operating Systems
27

Performance of Demand Paging
* Page Fault Rate 0 <p < 1.0
— if p=0no page faults
— if p =1, every reference is a fault
« Effective Access Time (EAT):
EAT = (1 - p) *memory access time
+ p*(page fault overhead+ swap page out
+ swap page in + restart overhead time)

Operating Systems
29

5/10/2018

Shared Pages Example: Editor is shared

ed1 a
a
od2 r 1| datar
eta E 2| auas
1
data 1 page table al edr
or P,
process P, 4| ed2
] 5
]
7 6| eda

age table
s 7| a2

od2

@

= N
a3 o
10
aia3 | page e
or P,

process Py

Operating Systems

Demand Paging

It means bringing a page into memory only when it is needed.
— Less I/O needed
— Less memory needed
— Faster response
— More users
Page is needed = reference to it
— invalid reference = abort
— not-in-memory = bring to memory
Page replacement — find some page in memory, but not really in
use, swap it out:
— algorithm
— performance — want an algorithm which will result in minimum number
of page faults.
Same page may be brought into memory several times.
Operating Systems

Demand Paging: Example

« Assumption: No associative memory
— Memory access time = 1 microsecond
— Page fault rate p=50%
— q (=50) % of the time the page that is being replaced has been
modified and therefore needs to be swapped out.
— Swap Page Time = 10 msec = 10,000 microsec
» Computation of Effective Access Time:
EAT =(1-p)*2 +p (2+q*10000+(1-)*20000))
=(1-0.5)*2+0.5(2+0.5*(10000)+(1-0.5)*20000)
=1+1+2500+5000
=75002 micro sec

Operating Systems

Page Replacement Algorithms

» Page fault process:
— Find the page to be removed or
— make room for incoming page

» Modified page must first be saved before being
overwritten
— If unmodified can be overwritten

 Better not to choose an often or recently used
page.
— It will probably need to be brought back in soon!

Operating Systems
31

Optimal Page Replacement Algorithms

Replace the page needed at the farthest point in
the future

Normally, given a proram, this is theoretically
impossible to know. However it can be predicted
by some means.

— For example, logging page use on the previous runs of
a process can be replayed for the future executions of
the same program with same data...

Operating Systems
33

FIFO Page Replacement Algorithm:
Implementation
Maintain a linked list of all pages
— in order of their coming into the memory
When required, the page at beginning of list is
replaced.
Disadvantage

— page in the memory the longest time, may be the
most often used one! Yet it will be replaced, causing
extensive page fault...

Operating Systems
35

5/10/2018

Page Replacement Algorithms

» The real algorithms in use are generally
combination of several approaches. The discussion
of few of the ones listted below is more an
academic one:

— Optimal

— Not recently used

- FIFO

— Second Chance

— The Clock

— Least Recently Used
Simulating LRU

Operating Systems

Not Recently Used Page Replacement Algorithm:
Implementation

» Each page has Reference bit, Modified bit

— R ad M bits are set when page is referenced and or
modified

» They are classified according to the combination.
1+ not referenced, not modified
. not referenced, modified
s referenced, not modified
.. referenced, modified

« NRU removes page at random from lowest
numbered non empty class

Operating Systems

Second Chance Page Replacement Algorithm:
number indicate the last reference times

Page loaded first
o 3 7 12 14 15 18

8
cHoj [FHeH-H]

(a)

Most recently
.~ loaded paga

Ais treated like a

3 8 otz M 15 18 20 oyl loaded page

7
[eEHeHeHeHFHeH#HA]

Tail (b) Head

+ Operation of a second chance

— The candidate page to be replaced is the one at the tail of the list. The replacement
depends on the reference bit.

— The page referenced, has its R bit set to 1. If a tail page has it is R bit set, it is reset and
moved to the head.

— If the tail page has its R bit 0, it is replaced, R bit is set to 1 and moved to the head.

— At page fault at time 20, A has R bit is reset: it is treated as if it has just been brought in
(numbers above pages are reference times), with R bit cleared.

Operating Systems
36

The Clock Page Replacement Algorithm

circular 2" chance

algorithm
Z
(]

When a page fault occurs,
the page the hand is
E pointing to is inspected.

The action taken depends
on the R bit:
R = 0: Evict the page

II] E R = 1:Clear R and advance hand

Operating Systems
37

Least Recently Used (LRU):bit matrix

* LRU maintains an nxn bit matrix in hardware

 On page reference, the corresponding row is set to
1, column to 0

+ At any instant the lowest value row is the LRU

Operating Systems
39

Simulating LRU in Software (1)

Hardware may not exist for the architecture
« So a software solution is more practical
Implementation of a counter that includes
the effect of the aging

Shift the counters right before the R bits are
added on a reference

This is repeated at every clock tick: each
time reference bits are cleared, reference
counters are shifted...

Operating Systems
a

5/10/2018

Least Recently Used (LRU)

It is based on the assumption that the pages used
recently will be used again soon

Write out the page that has been unused for the
longest time

Must keep a linked list of pages

— most recently used at front, least at rear

— update this list at every memory reference !!
Alternatively keep counter in each page table entry
— choose page with lowest value counter

— periodically zero the counter

Operating Systems

n x n LRU in hardware

Page Page Page Page Page
0 1 2 3 01 2 3 0 1 2 3 [) 0 1 2 3
ofjof1r|1]1 ojo1|1 ojojo]1 ofo|o|o ofojofo
11o0]o|o|o 101] 11001 1]0/0|0 1]10]0]0
2|loflofo]o ojojo]o 111]0]|1 1|1]0]0 111|011
3lojofjo|o ojojo|o ojojojo 13 FE1D 1|11]0]0
(a) (b) [C} (d) (e}
ofofjo}jo o111 oj1]1}]o ofj1]0]o0 of(t1]ojo
1{of1]1 oot ojoj1|o ofjojo]|o o|ojojo
1lofo|1 ojofjo]|1 ojojojo 1|11]of1 1]1]0}o0
1{ojo}|o ojojo|o 1{1|1]0 111|000 1]1]1]0
U] (@ (] 0} ()
LRU using a matrix — pages referenced in order
0y ki 3.2.3

Simulating LRU in Software(2)

R bits for R bits for R bits for R bits for R bits for

Eias Godiaici o] Boliacs Eodiach
[Ieltlel:Tx] | [Ttefel o] ; [:T+Tel+TeTx] | [:]efe[el+Te] | [e[*T+Te]e]e]
Page

o[10000000 | i [11000000 | i [11100000 | i [11110000 | i [otti1000 |
1[ooocoooo | i [1oococoo] i [11000000] i [ot100000 | i [10110000 |
2[10000000 | | [o1000000 | i [ootoo000] i [ooicooce | i [10001000 |
3 ooooooco | i [ooocacoo | i [10000000 | i [otocoooo | i [ootcacoo |
4 10000000 | i [11000000 | i [et1oo000] i [10110000 | i [oto11000 |
5[10000000 | | [01000000 | i [10100000 | i [01010000 | i [ooto1000 |

(@) (b) © () ©)

» The aging algorithm simulates LRU in software
» Note 6 pages for 5 clock ticks, (a) — (e)

Operating Systems

The Working Set Page Replacement Algorithm (1)

The WSClock Page Replacement Algorithm(1)

.

WS is the set of the pages that are currently in use
WS page replacing algorithms make use of the
locality of the reference

If the entire WS of a process is in the memory, no
page fault occurs until the process moves to a new
locality.

The pages will remain in a WS as long as their
reference ® bit is 1.

Otherwise, the difference between timestamp and
the current time is used to decide which one to
push out of WS.

Operating Systems

WS based PRA

Which page to be excluded from a WS, in case of a page
fault:

Remember that R and M bits are automatically set
R bits are cleared periodically

Each entry in the page table has a time stamp field and an
R bit together with other inf about the page...

On page fault, if the R bit is set, the clock time is written
to that entry, otherwise it is candidate for eviction, based
on the difference between the time stamp and the current
time...

Operating Systems

Similar to clock replacement algorithm, the pages
are arrange in a circular data structure with a
pointer.

The test is conducted from the pointer on ward,
which may remove the page from the WS or keeps
it as is, with R bit is set to 0,

If it is referenced its time is updated.

If Ris0 and it is not dirty and it is not within the
time t evict it. T is the age of the page, relative to
the current time (=currentTime-timestamp)...

If it is dirty and outside the window it is put on
hold for eviction...

Operating Systems

43

45

a1

5/10/2018

The Working Set Page Replacement Algorithm (2)

wik.t)

k
» The working set is the set of pages used by the k
most recent memory references

» w(kt) is the size of the working set at time, t

Operating Systems

The Working Set Page Replacement Algorithm (3)

The pages are tagged by the
virtual time and the R bit

Information about {

2204 Current virtual ime

2082 T4

/ R (Referenced) bit

one page
200511
Time of last use ——>-1980 1| | Scan all pages examining R bit:
i (R==1)
Page referenced | 1213 10 set time of last use to current virtual time
during this tick :
if (R == 0 and age > 1)
=TT remove this page
T it (R==0andage <)
:*‘Q' ";‘1 ":;’mw e remember the smallest time
uring this ti —
Page table

The working set algorithm

Operating Systems

Review of Page Replacement Algorithms

Optimal

Algorithm

Comment
Not implementable, but useful as a benchmark

NRU (Not Recently Used)

Very crude

FIFO (First-In, First-Out)

Might throw out important pages

Second chance

Big improvement over FIFO

Clock

Realistic

LRU (Least Recently Used)

Excellent, but difficult to implement exactly

NFU (Not Frequently Used)

Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

Operating Systems

5/10/2018

Stack Algorithms: 4 frames memory The Distance String in a stack algorithm

« Distance is the number of pages that the

Refarencestring 0 2 1 3 5 4 8 3 7 4 73355 311171341 .
R EREE R e referenced page is far from the top of the
Rl e P R ol column, including itsef.
] I 5|4|6|6|6|6|4[{4[4|7|7|7|5]|5 717 -
T2l 1]]5]s s s s e eleleee2[aels]s * The pages that are not in the memory yet
2|11 [1|1]1|1|1|1]|6|6|6]|6]|6 (1 1] . T
ololz|z]z|2|z]2]2[2]2]2[2]2]2]2]z2]2 are at a distance of |nf|n|tyfr0m the top of
ojojojojojojofojojojojojojojojo
Pagefauls P PP PP PP P [P P the table
Distancestring = = » ® = = = 4 = 4 2 3 1 651 2611423653
State of memory array M, after each item in
reference string is processed
Operating Systems Operating Systems
49 50
Predicting the page fault rates Predicting the page fault rates
#times
- Distance string can be used to predict the page 1 asiama g —
fault rates. 1= =18 |[=—c, e Cyete .
C,=2 Fo= 17 [+—0C 4G+ Cy+.. 4T,
+ Given memory size in number of frames (m) Con 1 Foe 16 |«— 0,20, Gyt +C.
and the distance string, one can compute the Ca= 4 s timas Fas 12
C,=2 B oocurs in Fg= 10 |=— #of faults with 5 framas
number of page faults (F). Ll ot o page
* Fp2Cy +C, -k=m+1,.n oo "
» Where m is memory size, n is the number of c -8 F-s
virtual pages, and F, is the number of page @ ®

faults, C; is the frequency of number iina

distance string. . » Computation of page fault rate from distance string

— the C vector for the memory size of 4.
— the F vector for different memory sizes:1,2,3,4,5,6,7,8

Operating Systems Operating Systems
51 52

Belady's Anomaly in FIFO PRAS Modeling Page Replacement Algorithms

All pages frames initially empty

» Belady's Anomaly in FIFO algorithms:

012 30140123 4
Youngestpage[[0 1]2]3]o]1]4]4]4]2]3]3 — More frames more faults!
of1j2]|3joj1]j1]|1]4]2]2
Oldest page oj1j2f3jojojo|1]4]4
FFFPPPPP PP Page fa . . .
o iPage ik + Stack algorithms: all other algorithms
— More frames less faults
01 2 3 01 4012 3 4
Youngest page oj1fafa|a|3j4|oj1]2[3]4
ol1f2]2|2]3|4jof1]2]|3
Oldest page oj1fj1fi1ja|3j4j0j1]2
ojlojoji1j2j3j4|0]|1
PP PP PP P P P P 10Pagefaults
()
» FIFO with 3 page frames
» FIFO with 4 page frames
| . Operating System: Operating System:
« P's show which page references show page faults 53 ey Syseme 54

Design Issues for Paging Systems

Local versus Global Allocation Policies

* Local ;I:)age replacement: the replacement
is local to the process, ie., one of the
pages of the process causing page fault is
replaced.

* Global page replacement: the oldest page
in the system is replaced

55

Local versus Global Allocation Policies (1)

N
o
t

&
ARV IBANGIDOAAGN
&

a) Original configuration
b) Local page replacement
c) Global page replacement

Operating Systems
57

Load Control

« Despite good designs, system may still thrash

« Solution :
Reduce number of processes competing for memory
— swap one or more to disk, divide up pages they held
— reconsider degree of multiprogramming

Operating Systems
59

5/10/2018

Design Issues for Paging Systems

 Local vs Global allocation policies

« Thrashing is eliminated using load control,
externally

« Page size can be optimized

« Separate instruction and data spaces
« Cleaning policy

« Sharing memory pages

Operating Systems

Local versus Global Allocation Policies (2)

Page faults/sec

Number of page frames assigned

Page fault rate as a function of the number of page
frames assigned

A: high page fault rate, B: Low page fault rate

Operating Systems

Advantages of small page size vs
disadvantages

+ Advantages
— less internal fragmentation
— better fit for various data structures, code sections
— less unused program in memory
« Disadvantages
— programs need many pages, larger page tables

Operating Systems

10

Minimization of overhead: Optimum

Page Size

» Overhead due to page table and internal

fragmentation

overhead internal
| fragmentation

« Where

— §=average process size in bytes
— p = page size in bytes

— e=size of each entry in the PT in bytes p= 1/259

Operating Systems

Shared Pages

Process
table

Program Data 1 Data2

Page tables

Optimized when

61

» Two processes may share the same program related page

table with separate data and related page tables

Operating Systems

Further Reading

Operating Systems

63

65

Separate Instruction and Data Spaces
preferred
Single address
space | space D space
232 282
Data
Program Program
N o R

5/10/2018

may be

Unused page
pag

Data

1. Program and data address spaces together: one address space

2. Program address space

3. Data address spaces
Operating Systems

Cleaning Policy: maintenance of an
acceptable level of free frames

» Need for a background process, paging daemon

— periodically inspects state of memory to maintain an
level of available pages

* When too few frames are free
— selects pages to evict using a replacement algorithm
 Implementation example:

acceptable

— use same clock type page handling: two handed clock, front

hand does cleaning, back hand does replacement..

Operating Systems

Segmentation

Operating Systems

11

Segmentation vs. Linear mempory

« So far virtual memory was linear, but
frames were in ad-hoc positions

» For many problems two or more memory
address spaces are more convenient.

« Compilers are good examples for this with
many unrelated components such as text,
symbol table, parse tree, etc.

Operating Systems
67

Segmentation (2)

20K
16K - 16K
12K |- 12K 12K (- 12K
Symbol
table
8K |- 8K [~ 8K|- Parse 8K -
tree
Source Call
toxt stack
K- 4K |- K- 4K -
Constants
OK 0K oK 0K 0K
Segment Segment Segment Segment Segment
0 1 2 3 4

Allows each table to grow or shrink, independently

perating Systems
69

Implementation of Pure Segmentation

£
Segment 4 Segment 4 %ﬁ% a7 %
(7K} 7K Segment 5 Segment 5
(4K) - 4K — /
o] Tt [l oA
(8K) 8K) (8K) Segment 6 i
(4K)
Segment &
Segment 2 Segment 2 Segment 2 Segment 2 lak)
(5K} (5K) (5K) (5K) P—
i % %
sogrem1 | RN AR S 8K}
(8) Segment 7 Segment 7 Segment 7 Segment 7
(5K) (5K) (5K) (5K)
Segment 0 Ssgment 0 Segment 0 Segment 0 Segment 0
(aK] (4K) (aK) (aK) L k)|
(a) (&) (=) (d) ()

(a)-(d) Development of checkerboarding
(e) Removal of the checkerboarding by compaction

Operating Systems
71

5/10/2018

Segmentation (1)

Virtual address space

Call stack|

} Froe
Address space [

Space currently being
allocated to the { Ty
parse tree S used by the parse tree

Constant table 4

Source text |

| Symbol table has
} bumped into the

Symbol table
| souree text table

» With one-dimensional address space with growing
tables, one table may bump into another

Operating Systems

Segmentation (3)

Consideration Paging Segmentation

Meed the programmes be aware | No Yes

that this technique s being used?

How many linear adsress 1 Many

spaces are there?

Gan the tofal address space Yes Yes

exceed the size of physical

memory?

Can procedures and data be. [Yas

distinguished and separately

protected?

Can fables whose size fluctuates | No Yes

be accommadated easily?

Is sharing of procedures No Yes

between users facilitsted?

Wiy was this technigue Togetalage | Toallow programs

Invented? linear address | and data to be broken
space without | up into logically
haning 1o buy indapendent address
more physical | spaces and io aid
memary sharing and

proteciion

Comparison of,paging.and segmentation

Segmentation with Paging: MULTICS (1)

- 36 bila
Page 2 enlry
Page 1 enfry "] 111 3 3
‘Segment & descriptor Paga 0 entry | Main mamry addass Sagmendtlengh H% | ‘
of ha page able i pages)
‘Segment 5 descrigtor Page t2ble for sagment 3
Fage e
‘Segment 4 dascrigtar 0 o2k worde
‘Segment 3 dascriptor 1= B words
. o
Segre e it
Segment 1 dascriptor Page 2 antry [——
yment 0 das tor Page 1 ents
Sy i == Fuocton bis
Descripior segment Page 0 antry.

Paga tabia for segment 1

» Descriptor segment points to page tables
« Segment descriptor — numbers are field lengths

Operating Systems

12

» Segment page table may not be in the
memory

» Page referenced may not be in the memory

» TLB is used to keep the address of the most
recently used pages

Operating Systems
73

Segmentation with Paging: MULTICS (3)

MULTICS virtual address

Page
m

Word
Descriptor Page frame \ ‘
Segment ‘ kge# Qleet
number - Tpccriptor MmO T page Page
segment table

Conversion of a 2-part MULT %am%gﬁmnto a main memory address
75

Segmentation with Paging: Pentium (1)

Bits 13 1 2

Index

/N

0=GDT/1 =LDT Privilege level (0-3)

A Pentium selector

Operating Systems
77

5/10/2018

Segmentation with Paging: MULTICS (2)

Address within
the segment
Pa Offset within
Segment number | | number | the page |
18 6 10

A 34-bit MULTICS virtual address

Operating Systems

Segmentation with Paging: MULTICS (4)

Comparison Is this
i entry
g —— used?
Segment Virtual Page
number page frame Protection Age l
4 1 7 Read/write 13 1
6 o 2 Read only 10 1
12 3 1 Read/write 2 1
o
2 1) Execute only 7 1
2 2 12 Execute only - 1
S

« Simplified version of the muLTICS TLB
+ Existence of 2 page sizes makes actual TLB more complicated

Operating Systems

Segmentation with Paging: Pentium (2)

0: 16-Bit segment 0 Segrment is abssnt from memory
1: 32-Bit segment 1. Segment s present in memory

- Privilege level (0-3)

‘u tl is in bytes }. ,—(? :m?unn
iis in pages
Segment type and protection
l — gment type P

Base 24-31 HD|D% my P|DPL|S| Type | Base 1623 |4
Base 015 Limit0-15 0

Relative

926w address

+ Pentium code segment descriptor
« Data segments differ slightly

Operating Systems

13

Segmentation with Paging: Pentium (3)

| Selector I Offset
Descriptor
Base address —><+>

L—— Limit

Other fields

32-Bit linear address

Conversion of a (selector, offset) pair to a linear address

Operating Systems
79

Segmentation with Paging: Pentium (5)

< progr
ool ing, B Typical uses of
X the levels

Level

Protection on the Pentium

Operating Systems
81

5/10/2018

Segmentation with Paging: Pentium (4)

‘ o [| ot |
ia)
Paga dractory Paga table Page iame
Ward
-
1024 T T
=
f
| T |
Directory eniry Page table
points fo ‘aniry paints.
e, i

[l

Mapping of a linear address onto a physical address

Operating Systems

14

