
5/10/2018

1

Operating Systems
1

Memory Management

Part II

• Virtual memory

• Paging and page replacement

• Modeling page replacement algorithms

• Design issues for paging systems

• Implementation issues

• Segmentation

Operating Systems
2

Virtual Memory (VM)

• Basic idea

• Paging

• Demand Paging and its performance

• Page Replacement and Page-

Replacement Algorithms

• Allocation of Frames

• Thrashing problem

• Segmentation: pure segmentation,

Segmentation with paging

Operating Systems
3

Basic Idea of Virtual Memory

• Basic idea behind the virtual memory is that the

combined size of programs, data, and stacks may easily

exceed the amount of physical memory available.

• This is more true in multiprogramming environment.

• The operating system uses physical memory together

with secondary storage to solve this problem.

• Virtual Memory seems to be a state of art universal

method. Processes are allocated physical memory at a

point they need based on the availability.

Operating Systems
4

Paging Concept in Virtual Memory

• Logical memory is divided into blocks of same
size called pages.

• Physical memory is divided into fixed-sized
blocks called frames (size is power of 2,
between 512 bytes and 8192 bytes).

• Pages are needed to be mapped to frames during
the execution.

• To run a program of size n pages, need to use n
frames.

• OS need to manage the page-to-frame mapping
dynamically.

Page Faulting

• During the execution, a reference to virtual

address is first checked if it has already

been mapped to a physical address.

• If not it is said ta cause a “page fault”.

Operating Systems
5

Operating Systems
6

Page Fault Algorithm-1

• If there is a reference to a page (every

address reference is a reference to a page),

– It will cause a trap to OS, which will in turn

cause “page fault” processing.

• Page fault processing:

– Find an empty frame

– Swap page into that frame

– Reset page’s validation bit.

– Give control back to the process causing the

trap (restart instruction)

5/10/2018

2

Operating Systems
7

Page Fault-2

• If there is no free page, OS starts page

replacement procedure:

– Page replacement: find some page in the memory,

the one which is not really in use, to replace.

– Conduct the swap operations.

– For performance reasons the algorithm used

should result in minimum number of page faults.

– It is possible that the same page is brought into

memory several times, during execution of a

program…

Operating Systems
8

Address Translation-1

• The virtual address generated during the

execution is composed of two parts:

– page number (p)

• used as an index into a page table which contains

base address of the page in physical memory

(frame).

– Page offset (d)

• combined with base address to define the

physical memory address to be referenced.

Operating Systems
9

Address Translation-2

• The base address is the address of the

frame to which the page is mapped.

– if the virtual page is already in the memory,

the address mapping is straight forward and

very efficient as it is done in firmware.

• If the page is not in the memory, first a

page fault occurs, after which the address

mapping is as before.

Operating Systems
10

Virtual address and MMU-Memory Management Unit

The position and function of the MMU

Operating Systems

11

Page-frame mapping: Example

The relation between

virtual addresses

and physical

memory address:

page table and

memory

Operating Systems
12

MMU address mapping

Internal operation of MMU with 16 4 KB pages

5/10/2018

3

Operating Systems
13

Implementation of Page Table

• Page table is kept in main memory.

• Page-table base register (PTBR) points to the page table.

• Page-table length register (PRLR) indicates size of the

page table.

• In this scheme every data/instruction access requires two

memory accesses. One for the page table and one for the

data/instruction.

• The two memory access problem can be solved by the use

of a special fast-lookup hardware cache called associative

registers or translation look-aside buffers (TLBs)

Operating Systems
14

Associative Register

• Associative registers – parallel search

• Address translation (A´, A´´)

– If A´ is in associative register, get frame #.

– Otherwise get frame # from page table in the

main memory

Page # Frame #

Operating Systems
15

Associative Register

• Valid-invalid bit attached to each entry in

the page table:

– “valid” indicates that the associated page is

in the process’ logical address space, and is

thus a legal page.

– “invalid” indicates that the page is not in the

process’ logical address space.

Operating Systems
16

Effective Access Time

• Associative Lookup =  time unit

• Assume memory cycle time is 1 microsecond

• Hit ratio – percentage of times that a page number

is found in the associative memory = 

• Effective Access Time (EAT)

EAT = f(PageTableAccessTime,MemoryAccessTime)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

Operating Systems
17

Two-level page tables

• 32 bit address with 2 page table fields

Second-level page tables

Top-level

page table

Operating Systems
18

Multilevel Paging and Performance

• Since each level is stored as a separate table in

memory, mapping a logical address to a physical

one may take four memory accesses.

• Even though time needed for one memory access is

theoretically four times as much, caching permits

performance to remain reasonable.

5/10/2018

4

Operating Systems
19

Multilevel Paging and Performance: Example

• Cache hit rate of 98 percent yields:

mem.access=100 nsec, cache.access=20 nsec,

effective access time = 0.98 x (100+20) + 0.02 x

(400+20)

= 126 nanoseconds.

which is only a 26 percent slowdown in memory

access time.

Operating Systems
20

Page Tables Entry Format

Typical page table entry

Operating Systems
21

TLBs – Translation Lookaside Buffers

A TLB to speed up paging

Operating Systems
22

Inverted Page Table

• One entry for each real page of memory.

• Entry consists of the virtual address of the page

stored in that real memory location, with

information about the process that owns that page.

• Decreases memory needed to store each page

table, but increases time needed to search the table

when a page reference occurs.

• Use hash table to limit the search to one — or at

most a few — page-table entries.

Operating Systems
23

Inverted Page Table Architecture

Operating Systems
24

Inverted Page Tables

Comparison of a traditional page table with an inverted page table

5/10/2018

5

Operating Systems
25

Shared Pages

• Shared code

– One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window

systems).

– Shared code must appear in same location in the logical

address space of all processes.

• Private code and data

– Each process keeps a separate copy of the code and

data.

– The pages for the private code and data can appear

anywhere in the logical address space.

Operating Systems
26

Shared Pages Example: Editor is shared

Operating Systems
27

DEMAND PAGING

Operating Systems
28

Demand Paging

• It means bringing a page into memory only when it is needed.

– Less I/O needed

– Less memory needed

– Faster response

– More users

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  bring to memory

• Page replacement – find some page in memory, but not really in

use, swap it out:

– algorithm

– performance – want an algorithm which will result in minimum number

of page faults.

• Same page may be brought into memory several times.

Operating Systems
29

Performance of Demand Paging
• Page Fault Rate 0  p  1.0

– if p = 0 no page faults

– if p = 1, every reference is a fault

• Effective Access Time (EAT):

EAT = (1 – p) *memory access time

+ p*(page fault overhead+ swap page out

+ swap page in + restart overhead time)

Operating Systems
30

Demand Paging: Example

• Assumption: No associative memory

– Memory access time = 1 microsecond

– Page fault rate p=50%

– q (=50) % of the time the page that is being replaced has been

modified and therefore needs to be swapped out.

– Swap Page Time = 10 msec = 10,000 microsec

• Computation of Effective Access Time:

EAT = (1 – p) *2 + p (2+q*10000+(1-q)*20000))

=(1-0.5)*2+0.5(2+0.5*(10000)+(1-0.5)*20000)

=1+1+2500+5000

=75002 micro sec

5/10/2018

6

Operating Systems
31

Page Replacement Algorithms

• Page fault process:

– Find the page to be removed or

– make room for incoming page

• Modified page must first be saved before being

overwritten

– If unmodified can be overwritten

• Better not to choose an often or recently used

page.

– It will probably need to be brought back in soon!

Operating Systems
32

Page Replacement Algorithms

• The real algorithms in use are generally

combination of several approaches. The discussion

of few of the ones listted below is more an

academic one:
– Optimal

– Not recently used

– FIFO

– Second Chance

– The Clock

– Least Recently Used

– Simulating LRU

Operating Systems
33

Optimal Page Replacement Algorithms

• Replace the page needed at the farthest point in

the future

• Normally, given a proram, this is theoretically

impossible to know. However it can be predicted

by some means.

– For example, logging page use on the previous runs of

a process can be replayed for the future executions of

the same program with same data…

Operating Systems
34

Not Recently Used Page Replacement Algorithm:

Implementation

• Each page has Reference bit, Modified bit

– R ad M bits are set when page is referenced and or

modified

• They are classified according to the combination.

1. not referenced, not modified

2. not referenced, modified

3. referenced, not modified

4. referenced, modified

• NRU removes page at random from lowest

numbered non empty class

Operating Systems
35

FIFO Page Replacement Algorithm:

Implementation

• Maintain a linked list of all pages

– in order of their coming into the memory

• When required, the page at beginning of list is

replaced.

• Disadvantage

– page in the memory the longest time, may be the

most often used one! Yet it will be replaced, causing

extensive page fault…

Operating Systems
36

Second Chance Page Replacement Algorithm:

number indicate the last reference times

• Operation of a second chance
– The candidate page to be replaced is the one at the tail of the list. The replacement

depends on the reference bit.

– The page referenced, has its R bit set to 1. If a tail page has it is R bit set, it is reset and
moved to the head.

– If the tail page has its R bit 0, it is replaced, R bit is set to 1 and moved to the head.

– At page fault at time 20, A has R bit is reset: it is treated as if it has just been brought in
(numbers above pages are reference times), with R bit cleared.

Tail Head

5/10/2018

7

Operating Systems
37

The Clock Page Replacement Algorithm

circular 2nd chance

algorithm

Operating Systems
38

Least Recently Used (LRU)

• It is based on the assumption that the pages used
recently will be used again soon

• Write out the page that has been unused for the
longest time

• Must keep a linked list of pages

– most recently used at front, least at rear

– update this list at every memory reference !!

• Alternatively keep counter in each page table entry

– choose page with lowest value counter

– periodically zero the counter

Operating Systems
39

Least Recently Used (LRU):bit matrix

• LRU maintains an nxn bit matrix in hardware

• On page reference, the corresponding row is set to
1, column to 0

• At any instant the lowest value row is the LRU

Operating Systems
40

n x n LRU in hardware

LRU using a matrix – pages referenced in order
0,1,2,3,2,1,0,3,2,3

Operating Systems
41

Simulating LRU in Software (1)

• Hardware may not exist for the architecture

• So a software solution is more practical

• Implementation of a counter that includes

the effect of the aging

• Shift the counters right before the R bits are

added on a reference

• This is repeated at every clock tick: each

time reference bits are cleared, reference

counters are shifted…

Operating Systems
42

Simulating LRU in Software(2)

• The aging algorithm simulates LRU in software

• Note 6 pages for 5 clock ticks, (a) – (e)

5/10/2018

8

Operating Systems
43

The Working Set Page Replacement Algorithm (1)

• WS is the set of the pages that are currently in use

• WS page replacing algorithms make use of the
locality of the reference

• If the entire WS of a process is in the memory, no
page fault occurs until the process moves to a new
locality.

• The pages will remain in a WS as long as their
reference ® bit is 1.

• Otherwise, the difference between timestamp and
the current time is used to decide which one to
push out of WS.

Operating Systems
44

The Working Set Page Replacement Algorithm (2)

• The working set is the set of pages used by the k
most recent memory references

• w(k,t) is the size of the working set at time, t

k

Operating Systems
45

WS based PRA

• Which page to be excluded from a WS, in case of a page
fault:

• Remember that R and M bits are automatically set

• R bits are cleared periodically

• Each entry in the page table has a time stamp field and an
R bit together with other inf about the page…

• On page fault, if the R bit is set, the clock time is written
to that entry, otherwise it is candidate for eviction, based
on the difference between the time stamp and the current
time…

Operating Systems
46

The Working Set Page Replacement Algorithm (3)

The working set algorithm

The pages are tagged by the

virtual time and the R bit

Operating Systems
47

The WSClock Page Replacement Algorithm(1)

• Similar to clock replacement algorithm, the pages
are arrange in a circular data structure with a
pointer.

• The test is conducted from the pointer on ward,
which may remove the page from the WS or keeps
it as is, with R bit is set to 0,

• If it is referenced its time is updated.

• If R is 0 and it is not dirty and it is not within the
time  evict it.  is the age of the page, relative to
the current time (=currentTime-timestamp)…

• If it is dirty and outside the window it is put on
hold for eviction…

Operating Systems
48

Review of Page Replacement Algorithms

5/10/2018

9

Operating Systems
49

Stack Algorithms: 4 frames memory

State of memory array M, after each item in
reference string is processed

Operating Systems
50

The Distance String in a stack algorithm

• Distance is the number of pages that the

referenced page is far from the top of the

column, including itself.

• The pages that are not in the memory yet

are at a distance of infinity from the top of

the table

Operating Systems
51

Predicting the page fault rates

• Distance string can be used to predict the page

fault rates.

• Given memory size in number of frames (m)

and the distance string, one can compute the

number of page faults (F).

• Fm=∑Ck + C∞, ‘ k=m+1,..n

• Where m is memory size, n is the number of

virtual pages, and Fm is the number of page

faults, Ci is the frequency of number i in a

distance string…

Operating Systems
52

Predicting the page fault rates

• Computation of page fault rate from distance string

– the C vector for the memory size of 4.

– the F vector for different memory sizes:1,2,3,4,5,6,7,8

Operating Systems
53

Belady's Anomaly in FIFO PRAs

• FIFO with 3 page frames

• FIFO with 4 page frames

• P's show which page references show page faults
Operating Systems

54

Modeling Page Replacement Algorithms

• Belady's Anomaly in FIFO algorithms:

– More frames more faults!

• Stack algorithms: all other algorithms

– More frames less faults

5/10/2018

10

Operating Systems
55

Design Issues for Paging Systems

Local versus Global Allocation Policies

• Local page replacement: the replacement
is local to the process, ie., one of the
pages of the process causing page fault is
replaced.

• Global page replacement: the oldest page
in the system is replaced

Operating Systems
56

Design Issues for Paging Systems

• Local vs Global allocation policies

• Thrashing is eliminated using load control,

externally

• Page size can be optimized

• Separate instruction and data spaces

• Cleaning policy

• Sharing memory pages

Operating Systems
57

Local versus Global Allocation Policies (1)

a) Original configuration
b) Local page replacement
c) Global page replacement

Operating Systems
58

Local versus Global Allocation Policies (2)

• Page fault rate as a function of the number of page

frames assigned

• A: high page fault rate, B: Low page fault rate

Operating Systems
59

Load Control
• Despite good designs, system may still thrash

• Solution :
Reduce number of processes competing for memory

– swap one or more to disk, divide up pages they held

– reconsider degree of multiprogramming

Operating Systems
60

Advantages of small page size vs

disadvantages

• Advantages

– less internal fragmentation

– better fit for various data structures, code sections

– less unused program in memory

• Disadvantages

– programs need many pages, larger page tables

5/10/2018

11

Operating Systems
61

Minimization of overhead: Optimum

Page Size

• Overhead due to page table and internal

fragmentation

• Where
– s = average process size in bytes

– p = page size in bytes

– e = size of each entry in the PT in bytes

2

s e p
overhead

p


 

page table space

internal
fragmentation

Optimized when

2p se

Operating Systems
62

Separate Instruction and Data Spaces may be

preferred

1. Program and data address spaces together: one address space

2. Program address space

3. Data address spaces

Operating Systems
63

Shared Pages

• Two processes may share the same program related page
table with separate data and related page tables

Operating Systems
64

Cleaning Policy: maintenance of an

acceptable level of free frames

• Need for a background process, paging daemon

– periodically inspects state of memory to maintain an acceptable

level of available pages

• When too few frames are free

– selects pages to evict using a replacement algorithm

• Implementation example:

– use same clock type page handling: two handed clock, front

hand does cleaning, back hand does replacement..

Operating Systems
65

Further Reading

Operating Systems
66

Segmentation

5/10/2018

12

Operating Systems
67

Segmentation vs. Linear mempory

• So far virtual memory was linear, but

frames were in ad-hoc positions

• For many problems two or more memory

address spaces are more convenient.

• Compilers are good examples for this with

many unrelated components such as text,

symbol table, parse tree, etc.

Operating Systems
68

Segmentation (1)

• With one-dimensional address space with growing
tables, one table may bump into another

Operating Systems
69

Segmentation (2)

Allows each table to grow or shrink, independently
Operating Systems

70

Segmentation (3)

Comparison of paging and segmentation

Operating Systems
71

Implementation of Pure Segmentation

(a)-(d) Development of checkerboarding

(e) Removal of the checkerboarding by compaction

Operating Systems
72

Segmentation with Paging: MULTICS (1)

• Descriptor segment points to page tables

• Segment descriptor – numbers are field lengths

5/10/2018

13

Operating Systems
73

• Segment page table may not be in the

memory

• Page referenced may not be in the memory

• TLB is used to keep the address of the most

recently used pages

Operating Systems
74

Segmentation with Paging: MULTICS (2)

A 34-bit MULTICS virtual address

Operating Systems
75

Segmentation with Paging: MULTICS (3)

Conversion of a 2-part MULTICS address into a main memory address
Operating Systems

76

Segmentation with Paging: MULTICS (4)

• Simplified version of the MULTICS TLB

• Existence of 2 page sizes makes actual TLB more complicated

Operating Systems
77

Segmentation with Paging: Pentium (1)

A Pentium selector

Operating Systems
78

Segmentation with Paging: Pentium (2)

• Pentium code segment descriptor

• Data segments differ slightly

5/10/2018

14

Operating Systems
79

Segmentation with Paging: Pentium (3)

Conversion of a (selector, offset) pair to a linear address

Operating Systems
80

Segmentation with Paging: Pentium (4)

Mapping of a linear address onto a physical address

Operating Systems
81

Segmentation with Paging: Pentium (5)

Protection on the Pentium

Level

