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Memory Management

Part II

• Virtual memory

• Paging and page replacement

• Modeling page replacement algorithms

• Design issues for paging systems

• Implementation issues

• Segmentation
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Virtual Memory (VM)

• Basic idea

• Paging

• Demand Paging and its performance 

• Page Replacement and Page-

Replacement Algorithms

• Allocation of Frames 

• Thrashing problem

• Segmentation: pure segmentation, 

Segmentation with paging
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Basic Idea of Virtual Memory

• Basic idea behind the virtual memory is that the 

combined size of programs, data, and stacks may easily 

exceed the  amount of physical memory available.

• This is more true in multiprogramming environment.

• The operating system uses physical memory together 

with secondary storage to solve this problem.

• Virtual Memory seems to be a state of art  universal 

method. Processes are allocated physical memory at a 

point they need based on the availability.
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Paging Concept in Virtual Memory

• Logical memory is divided into blocks of same 
size called pages.

• Physical memory is divided into fixed-sized 
blocks called frames (size is power of 2, 
between 512 bytes and 8192 bytes).

• Pages are needed to be mapped to frames during 
the execution.

• To run a program of size n pages, need to use n
frames.

• OS need to manage the page-to-frame mapping 
dynamically. 

Page Faulting

• During the execution,  a reference to virtual 

address is first checked if it has already 

been mapped to a physical address.

• If not it is said ta cause a “page fault”.
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Page Fault Algorithm-1

• If there is  a reference to a page (every 

address reference is a reference to a page), 

– It will cause a trap to OS, which will in turn 

cause  “page fault” processing.

• Page fault processing:

– Find an empty frame

– Swap page into that frame

– Reset page’s validation bit.

– Give control back to the process causing the 

trap (restart instruction)
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Page Fault-2

• If there is no free page, OS starts page 

replacement procedure:

– Page replacement: find some page in the memory, 

the one which is not really in use, to replace. 

– Conduct the swap operations.

– For performance reasons the algorithm used 

should  result in  minimum number of page faults.

– It is possible that the same page is brought into 

memory several times, during execution of a 

program…
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Address Translation-1

• The virtual address generated during the 

execution is composed of two parts:

– page number (p)

• used as an index into a page table which contains 

base address of the page in physical memory 

(frame).

– Page offset (d)

• combined with base address to define the 

physical memory address to be referenced.
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Address Translation-2

• The base address is the address of the 

frame to which the page is mapped. 

– if the virtual page is already in the memory, 

the address mapping is straight forward and 

very efficient as it is done in firmware.

• If the page is not in the memory, first a 

page fault occurs, after which the address 

mapping is as before.
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Virtual address and MMU-Memory Management Unit 

The position and function of the MMU
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Page-frame mapping: Example

The relation between

virtual addresses

and physical 

memory address:

page table and 

memory
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MMU address mapping

Internal operation of MMU with 16 4 KB pages
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Implementation of Page Table

• Page table is kept in main memory.

• Page-table base register (PTBR) points to the page table.

• Page-table length register (PRLR) indicates size of the 

page table.

• In this scheme every data/instruction access requires two 

memory accesses.  One for the page table and one for the 

data/instruction.

• The two memory access problem can be solved by the use 

of a special fast-lookup hardware cache called associative 

registers or translation look-aside buffers (TLBs)
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Associative Register

• Associative registers – parallel search 

• Address translation (A´, A´´)

– If A´ is in associative register, get frame #. 

– Otherwise get frame # from page table in the 

main memory

Page # Frame #
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Associative Register

• Valid-invalid bit attached to each entry in 

the page table:

– “valid” indicates that the associated page is 

in the process’ logical address space, and is 

thus a legal page.

– “invalid” indicates that the page is not in the 

process’ logical address space.

Operating Systems
16

Effective Access Time

• Associative Lookup =  time unit

• Assume memory cycle time is 1 microsecond

• Hit ratio – percentage of times that a page number 

is found in the associative memory = 

• Effective Access Time (EAT)

EAT = f(PageTableAccessTime,MemoryAccessTime)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 
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Two-level page tables

• 32 bit address with 2 page table fields

Second-level page tables

Top-level 

page table
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Multilevel Paging and Performance

• Since each level is stored as a separate table in 

memory, mapping a logical address to a physical 

one may take four memory accesses.

• Even though time needed for one memory access is 

theoretically four times as much, caching permits 

performance to remain reasonable.
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Multilevel Paging and Performance: Example

• Cache hit rate of 98 percent yields: 

mem.access=100 nsec, cache.access=20 nsec, 

effective access time = 0.98 x (100+20) + 0.02 x 

(400+20)

= 126 nanoseconds.

which is only a 26 percent slowdown in memory 

access time.
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Page Tables Entry Format

Typical page table entry
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TLBs – Translation Lookaside Buffers

A TLB to speed up paging

Operating Systems
22

Inverted Page Table

• One entry for each real page of memory.

• Entry consists of the virtual address of the page 

stored in that real memory location, with 

information about the process that owns that page.

• Decreases memory needed to store each page 

table, but increases time needed to search the table 

when a page reference occurs.

• Use hash table to limit the search to one — or at 

most a few — page-table entries.
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Inverted Page Table Architecture
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Inverted Page Tables

Comparison of a traditional page table with an inverted page table
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Shared Pages

• Shared code

– One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window 

systems). 

– Shared code must appear in same location in the logical 

address space of all processes.

• Private code and data 

– Each process keeps a separate copy of the code and 

data.

– The pages for the private code and data can appear 

anywhere in the logical address space.
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Shared Pages Example: Editor is shared

Operating Systems
27

DEMAND PAGING
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Demand Paging

• It means bringing a page into memory only when it is needed.

– Less I/O needed

– Less memory needed 

– Faster response

– More users

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  bring to memory

• Page replacement – find some page in memory, but not really in 

use, swap it out:

– algorithm

– performance – want an algorithm which will result in minimum number 

of page faults.

• Same page may be brought into memory several times.
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Performance of Demand Paging
• Page Fault Rate 0  p  1.0

– if p = 0 no page faults 

– if p = 1, every reference is a fault

• Effective Access Time (EAT):

EAT = (1 – p) *memory access time

+ p*(page fault overhead+ swap page out 

+ swap page in + restart overhead time) 
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Demand Paging: Example

• Assumption: No associative memory

– Memory access time = 1 microsecond

– Page fault rate p=50%

– q (=50) % of the time the page that is being replaced has been 

modified and therefore needs to be swapped out.

– Swap Page Time = 10 msec = 10,000 microsec

• Computation of Effective Access Time: 

EAT = (1 – p) *2  + p (2+q*10000+(1-q)*20000) )

=(1-0.5)*2+0.5(2+0.5*(10000)+(1-0.5)*20000)

=1+1+2500+5000

=75002     micro sec
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Page Replacement Algorithms

• Page fault process:

– Find the page to be removed or

– make room for incoming page

• Modified page must first be saved before being 

overwritten

– If unmodified can be overwritten

• Better not to choose an often or recently used  

page. 

– It will probably need to be brought back in soon!
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Page Replacement Algorithms

• The real algorithms in use are generally 

combination of several approaches. The discussion 

of few of the ones listted  below is more an 

academic one:
– Optimal

– Not recently used

– FIFO

– Second Chance

– The Clock

– Least Recently Used

– Simulating LRU
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Optimal Page Replacement Algorithms

• Replace the page needed at the farthest point in 

the future

• Normally, given a proram,  this is theoretically 

impossible to know. However it can be  predicted 

by some means.

– For example, logging page use on the previous runs of  

a process can be replayed for the future executions of 

the same program with same data…
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Not Recently Used Page Replacement Algorithm: 

Implementation

• Each page has Reference bit, Modified bit

– R ad M bits are set when page is referenced and or 

modified

• They are classified according to the combination.

1. not referenced, not modified

2. not referenced, modified

3. referenced, not modified

4. referenced, modified

• NRU removes page at random from lowest 

numbered non empty class

Operating Systems
35

FIFO Page Replacement Algorithm: 

Implementation

• Maintain a linked list of all pages

– in order of their coming into the memory

• When required, the page at beginning of list is 

replaced.

• Disadvantage

– page in the memory the longest time, may be the 

most often used one! Yet it will be replaced, causing 

extensive page fault…
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Second Chance Page Replacement Algorithm: 

number indicate the last reference times

• Operation of a second chance
– The candidate page to be replaced is the one at the tail of the list. The replacement 

depends on the reference bit.

– The page referenced, has its R bit set to 1. If a tail page has it is R bit set, it is reset and 
moved to the head.

– If  the tail page has its R bit 0,  it is replaced, R bit is set to 1 and moved to the head.

– At page fault at time 20, A has R bit is reset: it is treated as if it has just been brought in 
(numbers above pages are reference times), with R bit cleared.

Tail Head
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The Clock Page Replacement Algorithm

circular  2nd chance 

algorithm
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Least Recently Used (LRU)

• It is based on the assumption that the pages used 
recently will be used again soon

• Write out the page that has been unused for the 
longest time

• Must keep a linked list of pages

– most recently used at front, least at rear

– update this list at every memory reference !!

• Alternatively keep counter in each page table entry

– choose page with lowest value counter

– periodically zero the counter
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Least Recently Used (LRU):bit matrix

• LRU maintains an nxn bit matrix in hardware

• On page reference, the corresponding row is set to 
1, column to 0

• At any instant the lowest value row is the LRU
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n x n LRU in hardware 

LRU using a matrix – pages referenced in order
0,1,2,3,2,1,0,3,2,3
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Simulating LRU in Software (1)

• Hardware may not exist for the architecture

• So a software solution is more practical

• Implementation of a counter that includes 

the effect of the aging

• Shift the counters right before the R bits are  

added on a reference

• This is repeated at every clock tick: each 

time reference bits are cleared, reference 

counters are shifted…
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Simulating LRU in Software(2) 

• The aging algorithm simulates LRU in software

• Note 6 pages for 5 clock ticks, (a) – (e)
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The Working Set Page Replacement Algorithm (1)

• WS is the set of the pages that are currently in use

• WS page replacing algorithms make use of the 
locality of the reference

• If the entire WS of a process is in the memory, no 
page fault occurs until the process moves to a new 
locality.

• The pages will remain in a WS as long as their 
reference ® bit is 1.

• Otherwise,  the difference between  timestamp and 
the  current time is used to decide which one to 
push out of WS.
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The Working Set Page Replacement Algorithm (2)

• The working set is the set of pages used by the k
most recent memory references

• w(k,t) is the size of the working set at time, t

k
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WS based PRA

• Which page to be excluded from a WS, in case of a page 
fault:

• Remember that R and M bits are automatically set

• R bits are cleared periodically

• Each entry in the page table has a time stamp field and an 
R bit together with other inf about the page…

• On page fault, if the R bit is set, the clock time is written 
to that entry, otherwise it is candidate for eviction, based 
on the difference between the time stamp and the current 
time…
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The Working Set Page Replacement Algorithm (3)

The working set algorithm

The pages are tagged by the 

virtual time and the R bit
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The WSClock Page Replacement Algorithm(1)

• Similar to clock replacement algorithm, the pages 
are arrange in a circular data structure with a 
pointer.

• The test is conducted from the pointer on ward, 
which may remove the page from the WS or keeps 
it as is, with R bit is set to 0,

• If it is referenced its time is updated.

• If  R is 0 and it is not dirty and it is not within the 
time  evict it.  is the age of the page, relative to 
the current time (=currentTime-timestamp)…

• If it is dirty and outside the window it is put on 
hold for eviction…
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Review of Page Replacement Algorithms
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Stack Algorithms: 4 frames memory

State of memory array M, after each item in 
reference string is processed
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The Distance String in a stack algorithm

• Distance is the number of pages that the 

referenced page is far from  the top of the 

column, including itself.

• The pages that are not in the memory yet 

are at a distance of infinity from the top of 

the table
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Predicting the page fault rates

• Distance string can be used to predict the page 

fault rates.

• Given memory size in number of frames (m) 

and the distance string, one can compute the 

number of page faults (F).

• Fm=∑Ck + C∞, ‘ k=m+1,..n

• Where m is memory size, n is the number of 

virtual pages, and Fm is the number of page 

faults, Ci is the frequency of number i in a 

distance string…
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Predicting the page fault rates

• Computation of page fault rate from distance string

– the C vector for the memory size of 4.

– the F vector for different memory sizes:1,2,3,4,5,6,7,8
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Belady's Anomaly in FIFO PRAs

• FIFO with 3 page frames

• FIFO with 4 page frames

• P's show which page references show page faults
Operating Systems
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Modeling Page Replacement Algorithms

• Belady's Anomaly in FIFO algorithms:

– More frames more faults!

• Stack algorithms: all other algorithms

– More frames less faults 
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Design Issues for Paging Systems

Local versus Global Allocation Policies 

• Local page replacement: the replacement 
is local to the process, ie., one of the 
pages of the process causing page fault is 
replaced.

• Global page replacement: the oldest page 
in the system is replaced
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Design Issues for Paging Systems

• Local vs Global allocation policies

• Thrashing is eliminated using load control, 

externally 

• Page size can be optimized

• Separate instruction and data spaces

• Cleaning policy

• Sharing memory pages
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Local versus Global Allocation Policies (1)

a) Original configuration
b) Local page replacement
c) Global page replacement
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Local versus Global Allocation Policies (2)

• Page fault rate as a function of the number of page 

frames assigned

• A: high page fault rate, B: Low page fault rate
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Load Control
• Despite good designs, system may still thrash

• Solution :
Reduce number of processes competing for memory

– swap one or more to disk, divide up pages they held

– reconsider degree of multiprogramming
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Advantages of small page size vs 

disadvantages

• Advantages

– less internal fragmentation 

– better fit for various data structures, code sections

– less unused program in memory

• Disadvantages

– programs need many pages, larger page tables
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Minimization of overhead: Optimum 

Page Size

• Overhead due to page table and internal 

fragmentation

• Where
– s = average process size in bytes

– p = page size in bytes

– e = size of each  entry in the PT in bytes

2

s e p
overhead

p


 

page table space

internal 
fragmentation

Optimized when

2p se
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Separate Instruction and Data Spaces may be 

preferred

1. Program and data address spaces together: one address space 

2. Program address space

3. Data address spaces
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Shared Pages

• Two processes may share the same program related page 
table with separate data and related page tables
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Cleaning Policy: maintenance of an 

acceptable level of free frames

• Need for a background process, paging daemon

– periodically inspects state of memory to maintain an acceptable 

level of available pages

• When too few frames are free

– selects pages to evict using a replacement algorithm

• Implementation example:

– use same clock type page handling: two handed clock, front 

hand does cleaning, back hand does replacement..
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Further Reading
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Segmentation
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Segmentation vs. Linear mempory

• So far virtual memory was linear, but 

frames were in ad-hoc positions

• For many problems two or more memory 

address spaces are more convenient.

• Compilers are good examples for this with 

many unrelated components such as text, 

symbol table, parse tree, etc.
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Segmentation (1)

• With one-dimensional address space with growing 
tables, one table may bump into another
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Segmentation (2)

Allows each table to grow or shrink, independently
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Segmentation (3)

Comparison of paging and segmentation
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Implementation of Pure Segmentation

(a)-(d) Development of checkerboarding

(e) Removal of the checkerboarding by compaction
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Segmentation with Paging: MULTICS (1)

• Descriptor segment points to page tables

• Segment descriptor – numbers are field lengths
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• Segment page table may not be in the 

memory

• Page referenced may not be in the memory

• TLB is used to keep the address of the most 

recently used pages
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Segmentation with Paging: MULTICS (2)

A 34-bit MULTICS virtual address
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Segmentation with Paging: MULTICS (3)

Conversion of a 2-part MULTICS address into a main memory address
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Segmentation with Paging: MULTICS (4)

• Simplified version of the MULTICS TLB

• Existence of 2 page sizes makes actual TLB more complicated
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Segmentation with Paging: Pentium (1)

A Pentium selector
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Segmentation with Paging: Pentium (2)

• Pentium code segment descriptor

• Data segments differ slightly
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Segmentation with Paging: Pentium (3)

Conversion of a (selector, offset) pair to a linear address
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Segmentation with Paging: Pentium (4)

Mapping of a linear address onto a physical address
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Segmentation with Paging: Pentium (5)

Protection on the Pentium

Level


