
1

Memory Management 1

 Background

 Swapping

 Contiguous Allocation

 Variable size Multiple-partition allocation

 Multiprogramming and memory

management

Background

 Program must be resident in the memory

to be executed within context of a process.

 Input queue (Long Term Scheduling) –

collection of programs on the disk that are

waiting to be brought into memory to run

within respective processes.

 User programs go through tree main

steps: compile, load, execute

Steps of Processing a User Program Logical vs. Physical Address Space

 The concept of a logical address space to be

bound to a physical address space is central to

proper memory management

 Logical address – generated by the CPU; also

referred to as virtual address

 Physical address – address seen by the

memory unit

 Logical addresses are valid in compile-time,

load-time and execution time.

 physical addresses are valid in execution time

only

Memory-Management Unit (MMU)

 Virtual address need to be mapped to

physical address just before execution.

 For example, in MMU schemes, the

relocation register is updated so that the

actual physical address is created by

adding the content of the relocation register

to the logical address generated by a user

process just before the execution.

 The user programs deal with logical

addresses; it never sees the real physical

addresses

Example: Dynamic relocation using a relocation

register

2

Dynamic Loading Schemes

 A program routine is not loaded until it is called

 Advantages:

 Better memory-space utilization; unused

routine is never loaded

 Useful when large amounts of code are needed

to handle infrequently occurring cases

 No special support from the operating system

is required implemented through program

design

Dynamic Linking

 Linking to library routines is postponed until

execution time

 Small piece of code, stub, used to locate the

appropriate memory-resident library routine

 A so called stub function replaces itself with

the address of the routine, and facilitates the

execution of the routines.

 Dynamic linking is particularly useful for

dynamically loadable library routines.

Swapping

 A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution
(Mid term scheduling)

 Backing store – disk space allocated should be large enough to
accommodate copies of all memory images for all users; must
provide direct access to these images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; a lower-priority process is swapped out to
create main memory space so that a higher-priority process can be
loaded and executed

 Total transfer time is directly proportional to the amount of
memory swapped

 Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows)

Schematic View of Swapping

Contiguous Memory Allocation Scheme

 Main memory is usually partitioned into two:

 Resident operating system, usually held in low memory

with interrupt vector

 User processes held in high memory

 Single-partition allocation

 Relocation-register scheme used to protect user

processes from each other, and operating-system code

and its data

 Relocation register contains value of smallest physical

address;

 limit register contains range of logical addresses –

each logical address must be less than the limit register

A base and a limit register define a logical address space

3

HW address protection with base and limit registers Contiguous Allocation (Cont.)

 Multiple-partition allocation

 Hole – block of available memory; holes of various size are

scattered throughout memory

 When a process arrives, it is allocated memory from a hole large

enough to accommodate it

 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size.

Produces the smallest leftover hole.

 Worst-fit: Allocate the largest hole; must also search

entire list. Produces the largest leftover hole.

How to satisfy a request of size n from a

list of free holes

First-fit and best-fit are better than the

worst-fit in terms of speed and storage

utilization

Fragmentation

 External Fragmentation – total memory space exists is big

enough, but it is not contiguous to be allocated to any

program.

 Internal Fragmentation – allocated memory may be slightly

larger than requested memory; this size difference is

memory internal to a partition

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory

together in one large block

 Compaction is possible only if relocation is dynamic,

and is done at execution time

 I/O problem

Do not relocate a program while it is involved in I/O

Do I/O only into OS buffers

17

Variable size Multiple-partition allocation

Hole – block of available memory; holes of

various size are scattered throughout

memory.

When a process arrives, it is allocated

memory from a hole large enough to

accommodate it.

Operating system maintains information

about:

a) allocated partitions b) free partitions

(hole)

18

Swapping with Variable size

partitioning-1

Memory allocation changes as processes

 created or moved into the memory

 terminated or moved out of the memory

(In the figures the shaded regions are unused memory)

4

19

Space allocation

 Allocating space for growing data segment

 Allocating space for growing stack & data segment

20

Modeling multi-Programming-1

 If p is the fraction of the time a process

spends in I/O wait state, then

CPU utilization with n processes in the

system = 1 - pn

==> higher the multiprogramming ==> better

is the CPU utilization.

Balancing of n based on p: balancing is

maintained by a mix of CPU- versus I/O-

intensive jobs

21

Memory management rules

Fifty percent rule: On the average (over

time), if the mean number of processes in

memory is n, the mean number of holes is

n/2 (adjacent holes merge, but adjacent

programs do not).

Unused memory rule: If k is the ratio of the

average size of a hole to that of a process,

then the fraction of memory occupied by

holes, f = k/(k+2).

22

Memory management rules(cont.)

 Computation of f = k/(k+2), where number of processes is

n and the memory size is m.

 If s: avg. process size,

h: avg. hole size

==> k=h/s, h=ks

 Total hole memory H=h(n/2)= ks(n/2),

also H=m-ns

==>ks(n/2)=m-ns,

==> m=ns(k/2 +1),

from f=H/m, f= (ksn/2)/m= (ksn/2)/(ns(k/2+1)

thus, f=k/(k+2).

23

How to keep track of memory usage

in variable size partition

1. Bit Maps

2. Linked Lists

3. Buddy System

24

Bit Maps

 Memory Management with Bit Maps

 Divide up the memory into allocation

units.

 Corresponding to each allocation unit is

a bit in the bit map that is 1/0

(allocated/free).

5

25

Bit Maps vs. linked list

a. Part of memory with 5 processes, 3 holes
 tick marks show allocation units

 shaded regions are free

b. Corresponding bit map

c. Same information as a list

26

Linked Lists-1

Four neighbor combinations for the terminating process X

27

Linked List-2

Memory Management with Linked Lists

 Just keep track of the end points of allocated and

free memory segments.

28

Linked lists-3

Memory allocation units: Pink - used, Yellow - unused

1 2 3 4 5 6 7 8 9 10 11 12 13 14

U 1 5 F 6 3 U 9 2 F 11 4

Linked list memory map

29

Buddy system-1

Memory Management with Buddy System

Deal with the memory as segments of size

2k for some positive k.

Buddy partition splitting or coalescing.

 It is fast, but suffers from both internal

and external fragmentation.

30

Buddy System-2

 Memory is allocated in powers of 2 sized units during

load time

1 MB

512KB256KB90KB 128KB

300KB256KB90KB 128KB

300KB512KB

Initially

90 KB request

300 KB request

90 KB returned

6

31

Buddy System-3

 This method makes de-allocation fast. If a

block of size 2k is released then the

memory manager checks only the list of 2k

sized holes to merge them into a 2k+1 sized

partition

 Internal fragmentation is caused since

memory requests are fitted in 2k sized

partitions

?

