
1

Operating System Concepts

Threads

Concepts and Implementation

Operating System Concepts

Threads

Multithreading Models

Threading Issues

Why Threads

Thread libraries:

POSIX Pthreads

Win32 threads

Java threads

Operating System Concepts

Single and Multithreaded Processes

Operating System Concepts

Benefits

Responsiveness

Resource (memory, file, etc.)

Sharing

Economy (less synchronization

overhead)

Utilization of MP Architectures

Operating System Concepts 5

Benefits-1

A traditional OS process is one thread of
execution only.

Multiple threads allow multiple thread of
computation in the same address space.

Decomposing applications into concurrent
threads, may reduce process or application
blocking

It may even simplify the programming

Easier to create and destroy threads

They may offer performance gain

It is possible to utilize multiple CPUs

Operating System Concepts 6

Benefits-2

• Performance gains from

multiprocessing hardware

(parallelism)

• Different threads can run on

different processors

simultaneously with no special

input from the user and no

effort on the part of the

programmer

2

Operating System Concepts 7

Benefits -3

An application that uses multiple

processes can be replaced by an

application that uses multiple

threads to accomplish the same

tasks, if possible.

Operating System Concepts

User/Kernel Threads

User level thread management done using

user-level threads library

Primary user level thread libraries:

 UNIX and Linux: POSIX Pthreads

 Windows: Win32 threads

 JVM: Java threads

Kernel level threads are managed by the

operating system itself

Operating System Concepts

User and Kernel level

Multithreading Models:

Done by the kernel

Many-to-One

One-to-One

Many-to-Many

Operating System Concepts

Many-to-One Model

Operating System Concepts

One-to-one Model

Operating System Concepts

Many-to-Many Model

Allows many user level threads to

be mapped to many kernel threads

Allows the operating system to

create a sufficient number of kernel

threads

Solaris prior to version 9

Windows NT/2000 with the

ThreadFiber package

3

Operating System Concepts

Many-to-Many Model

Operating System Concepts 14

Implementing Threads in User Space

Operating System Concepts 15

Implementing Threads in User Space

A user-level threads package:

Kernel knows nothing about threads.

The user level library can manage a
thread table to allow orderly execution. If
a thread blocks it is state is saved in the
table and a ready thread is allowed to
execute…

The application has its own thread
scheduler…

Result: Efficient implementation is very
hard to achieve, virtually impossible…

Operating System Concepts 16

Kernel level threads

Operating System Concepts 17

Kernel level threads

A threads package managed by the
kernel:

Kernel has a thread table to keep record
of all the threads in the system

A thread library is part of the system call
library.

Kernel level thread management is
much more expensive, as blocking is
handled similar to multiple process case
concept…

Operating System Concepts 18

Hybrid Implementations

Multiplexing user-level threads onto kernel- level threads:

using advantages of user/kernel level threads

4

Operating System Concepts

Thread Cancellation

Terminating a thread before it has

finished

Two general approaches:

Asynchronous cancellation

terminates the target thread

immediately

Deferred cancellation allows the

target thread to periodically check if

it should be cancelled

Operating System Concepts

Thread Pools

Create a number of threads in a pool where

they await to be activated.

Advantages:

Usually slightly faster to service a request

with an existing thread than create a new

thread

Allows the number of threads in the

application(s) to be bound to the size of the

pool

Operating System Concepts

Thread Specific Data

Each thread can have its own

copy of data

This is useful when there is no

control over the thread creation

process (i.e., when using a

thread pool)

Operating System Concepts

Scheduler Activations

Scheduler maintains an appropriate

number of kernel threads allocated to

an application

Scheduler activations provide upcalls:

a communication mechanism from the

kernel to the thread library

This communication allows an

application to maintain the correct

number kernel threads

Operating System Concepts

What is Pthreads

In order to take full advantage of the capabilities provided

by threads, a standardized programming interface was

required.

For UNIX systems, this interface has been specified

by the IEEE POSIX 1003.1c standard (1995).

Implementations adhering to this standard are referred

to as POSIX threads, or Pthreads.

Most hardware vendors now offer Pthreads in addition

to their proprietary API's.

The POSIX standard has continued to evolve and

undergo revisions, including the Pthreads specification.

Operating System Concepts

Pthreads

Some useful links:

standards.ieee.org/findstds/standard/1003.1-2008.html

www.opengroup.org/austin/papers/posix_faq.html

www.unix.org/version3/ieee_std.html

API specifies behavior of the thread library,

implementation is up to development of the library.

Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

Pthreads are defined as a set of C language programming

types and procedure calls, implemented with a pthread.h

header/include file and a thread library

http://standards.ieee.org/findstds/standard/1003.1-2008.html
http://www.opengroup.org/austin/papers/posix_faq.html
http://www.unix.org/version3/ieee_std.html

5

Operating System Concepts 25

The Thread Model (2)

Per process: Items shared by all threads in a

process

Per thread: Items private to each thread

Operating System Concepts

When compared to the cost of creating and

managing a process, a thread can be created with

much less operating system overhead. The

difference could be up to 20:1

Threaded applications offer potential performance

gains and practical advantages over non-threaded

applications :

Overlapping CPU work with I/O:

Aprogram may have sections where it is performing a

long I/O operation. While one thread is waiting for an

I/O system call to complete, CPU intensive work can

be performed by other threads.

Common Reason for Threads (1)

Operating System Concepts

Priority/real-time scheduling:

tasks which are more important can be scheduled

to supersede or interrupt lower priority tasks.

Asynchronous event handling:

interleaving. For example, a web server can both

transfer data from previous requests and manage

the arrival of new requests.

A perfect example is the typical web browser,

where many interleaved tasks can be happening

at the same time, and where tasks can vary in

priority.

Common Reason for Threads (2)

Operating System Concepts

Example: WINDOWS: Start button/ All apps/Windows

Administrative Tools/Resource Monitor.

Operating System Concepts

Work that can be executed, or data that

can be operated on, by multiple tasks

simultaneously:

Block for potentially long I/O waits

Use many CPU cycles in some places but

not others

Must respond to asynchronous events

Some work is more important than other

work (priority interrupts)

Suitability for thread implementation

Operating System Concepts 30

Thread Usage (1)

A word processor with three threads: formatting, user
interaction, backup threads

6

Operating System Concepts 31

Thread Usage: web server

A multithreaded Web server: maintains a cache to

hold the frequently requested pages

Operating System Concepts 32

Thread Usage (3)

Rough outline of code for the web server

(a) Dispatcher thread: handles the incoming web page requests

(b) Worker thread, when woken up checks to see if the
requested page in the cache, if not it reads from the disk
before delivering

One worker would have been inefficient as it has to block until
IO is complete. Thus multiple worker implementation should
be preferred.

Worker thread: clientWeb Dispatcher
Thread

Operating System Concepts

Manager/worker: a single thread, the manager

assigns work to other threads, the workers.

Typically, the manager handles all input and

parcels out work to the other tasks.

Pipeline: a task is broken into a series of

suboperations, each of which is handled in series,

but concurrently, by a different thread. An

automobile assembly line best describes this

model.

Peer: similar to the manager/worker model, but

after the main thread creates other threads, it

participates in the work just like others.

common models for threading

Operating System Concepts

All threads have access to the same

global, shared memory

Threads also have their own private

data

Programmers are responsible for

synchronizing access (protecting)

globally shared data.

Shared Memory Model

Operating System Concepts

Multi-thread appearance

Operating System Concepts 36

User Level Thread Scheduling

Example

Possible scheduling of user-level threads

50-msec process quantum

threads run 5 msec/CPU burst

7

Operating System Concepts 37

Kernel Level Thread Scheduling

Example

Possible scheduling of kernel-level threads

50-msec process quantum

threads run 5 msec per CPU burst
Operating System Concepts

Thread-Safeness

• Suppose that your application creates several threads, each

of which makes a call to the same library routine

• There is problem: This not thread safe

Operating System Concepts

Although the Pthreads API is an ANSI/IEEE

standard, implementations can, and usually

do, vary in ways not specified by the standard.

Because of this, a program that runs fine on

one platform, may fail or produce wrong

results on another platform.

For example, the maximum number of threads

permitted, and the default thread stack size

are two important limits to consider when

designing your program.

Thread Limits

Operating System Concepts

/**

* FILE: hello.c

* DESCRIPTION:

* A "hello world" Pthreads program. Demonstrates thread creation and

* termination.

* AUTHOR: Blaise Barney

* LAST REVISED: 08/09/11

**/

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define NUM_THREADS 5

void *PrintHello(void *threadid)

{

long tid;

tid = (long)threadid;

printf("Hello World! It's me, thread #%ld!\n", tid);

pthread_exit(NULL);

}

int main(int argc, char *argv[])

{

pthread_t threads[NUM_THREADS];

int rc;

long t;

for(t=0;t<NUM_THREADS;t++){

printf("In main: creating thread %ld\n", t);

rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

if (rc){

printf("ERROR; return code from pthread_create() is %d\n", rc);

exit(-1);

}

}

/* Last thing that main() should do */

pthread_exit(NULL);

}

pthread Example

Operating System Concepts

The pthread_create() routine permits the

programmer to pass one argument to the thread

start routine.

For cases where multiple arguments must be

passed, this limitation is easily overcome by creating

a structure which contains all of the arguments, and

then passing a pointer to that structure in the

pthread_create() routine.

All arguments must be passed by reference and cast

to (void *).

Passing Arguments to Threads

Operating System Concepts

/**

* FILE: hello_arg2.c

* DESCRIPTION:

* A "hello world" Pthreadsprogram which demonstrates another safe way

* to pass arguments to threads during thread creation. In this case,

* a structure is used to pass multiple arguments.

* AUTHOR: Blaise Barney

* LAST REVISED: 01/29/09

**/

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define NUM_THREADS 8

char *messages[NUM_THREADS];

struct thread_data

{

int thread_id;

int sum;

char *message;

};

struct thread_data thread_data_array[NUM_THREADS];

void *PrintHello(void *threadarg)

{

int taskid, sum;

char *hello_msg;

struct thread_data *my_data;

sleep(1);

my_data = (struct thread_data *) threadarg;

taskid = my_data->thread_id;

sum = my_data->sum;

hello_msg = my_data->message;

printf("Thread %d: %s Sum=%d\n", taskid, hello_msg, sum);

pthread_exit(NULL);

}

int main(int argc, char *argv[])

{

pthread_t threads[NUM_THREADS];

int *taskids[NUM_THREADS];

int rc, t, sum;

sum=0;

messages[0] = "English: Hello World!";

messages[1] = "French: Bonjour, le monde!";

messages[2] = "Spanish: Hola al mundo";

messages[3] = "Klingon: Nuq neH!";

messages[4] = "German: Guten Tag, Welt!";

messages[5] = "Russian: Zdravstvytye, mir!";

messages[6] = "Japan: Sekai e konnichiwa!";

messages[7] = "Latin: Orbis, te saluto!";

for(t=0;t<NUM_THREADS;t++) {

sum = sum + t;

thread_data_array[t].thread_id = t;

thread_data_array[t].sum = sum;

thread_data_array[t].message = messages[t];

printf("Creating thread %d\n", t);

rc = pthread_create(&threads[t], NULL, PrintHello, (void *)

&thread_data_array[t]);

if (rc) {

printf("ERROR; return code from pthread_create() is %d\n", rc);

exit(-1);

}

}

pthread_exit(NULL);

}

Thread Multiple Argument Passing Example

