
1

Operating Systems

Classical Synchronization

Problems

Operating Systems

Bounded(N places)-Buffer

Readers and Writers

Dining-Philosophers

Sleeping Barber

Dining-Philosophers Problem

Solution using monitors

Classical mutual exclusion problems

Operating Systems

Implementation of Producer-consumer Shared

Bounded-Buffer Problem Using Semaphore

 Each of N buffer places can hold one data item

 Implementation:

Use binary semaphore mutex to establish

mutual exclusion on buffer update, initialized

to 1

Use a multi-value semaphore full to

implement item consumption, initialized to 0

Use a multi-value semaphore empty to

implement item production, initialized N.

Operating Systems

Bounded Buffer Problem (Cont.)

 The structure of the producer process

do {

// produce an item

wait (empty); // queued if 0

wait (mutex);

// add the item to the buffer

signal (mutex);

signal (full); //allow consumer to consume if any

} while (true);

Operating Systems

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

do {

wait (full); //queue if 0

wait (mutex);

// remove an item from buffer

signal (mutex);

signal (empty); //allow producer to produce, if any

// consume the removed item

} while (true);

Operating Systems

Implement Readers-Writers Problem using

Semaphore

 A data set is shared among a number of concurrent reader and writer

processes

 Readers – only read the data set; they do not perform any updates

 Writers – write the data item to be read by the readers

 Design algorithm:

 multiple readers can read an item, if exist, concurrently with no protection

 Writer(s) can only write data item in mutual exclusion

 A writer and a reader can write and read in mutual exclusion

 Modeling Shared Data

 Data set: item

 Semaphore mutex initialized to 1

 Semaphore wrt initialized to 1

 Integer readcount is readers shared memory, initialized to 0: it counts

number of readers in the process of reading.

2

Operating Systems

Readers-Writers Problem (Cont.)

 writer process: should write only if there is no active

reader

do {

wait (wrt) ; // no limit on number of items

// writing item is performed

signal (wrt) ;

} while (true)

Operating Systems

Readers-Writers Problem (Cont.)

 The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readercount == 1) wait (wrt) ;

signal (mutex)

// reading item is performed

wait (mutex) ;

readcount - - ;

if redacount == 0) signal (wrt) ;

signal (mutex) ;

} while (true)

Operating Systems

Dining-Philosophers Problem: 5

philosopher dine and think

 Modeling: functions: think(), eat(), take_fork(), put_fork()

 Share Data set:

 Bowl of rice

 5 chopsticks: Semaphore fork [5], initialized to 1

5 Chinese philosophers dine and

think randomly.

Operating Systems

Dining Philosophers: First Try

Is this solution correct? No control over the state of
the forks!

Operating Systems

Dining Philosophers: Correct Try: Control over the

state of the foks

Solution to dining philosophers problem (part 1)

Note that mutex controls all CSs; S[i] are initially set to 0

Operating Systems

Dining Philosophers

Solution to dining philosophers problem (part 2)

3

Operating Systems

Sleeping Barber

Operating Systems

The Sleeping Barber Problem (2)

waiting is shared data item.

Operating Systems

Problems with Semaphores

 Correct use of semaphore operations is not

easy.

 Omitting of wait (mutex) or signal (mutex) or

both is cause of incorrect solutions.

Operating Systems

Monitors: A higher level synchronization

construct

 A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

 Only one process may be active within the monitor at a
time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

}

Operating Systems

Schematic view of a Monitor

Operating Systems

Condition Variables and dining

philosophers

 condition x, y;

Two operations on a condition

variable:

x.wait () – a process that invokes

the operation is suspended.

x.signal () – resumes one of

processes (if any) that invoked

x.wait ()

4

Operating Systems

Monitor with Condition Variables

Operating Systems

Solution to Dining Philosophers: Monitor

Solution

monitor DiningPhilosopher

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

Operating Systems

Monitor Solution to Dining Philosophers (cont)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

Operating Systems

Thread examples: MUTEX

/* mutex are only valid within the same process */

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

int counter=0;

/* Function C */

void functionC()

{

pthread_mutex_lock(&mutex1);

counter++

pthread_mutex_unlock(&mutex1);

}

Operating Systems

Mutex example program: mutex1.c

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>

void *functionC();
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

int counter = 0;

main()

{

int rc1, rc2;
pthread_t thread1, thread2;

/* Create independent threads each of which will execute functionC */

if((rc1=pthread_create(&thread1, NULL, &functionC, NULL)))

{
printf("Thread creation failed: %d\n", rc1);

}

if((rc2=pthread_create(&thread2, NULL, &functionC, NULL)))

{

printf("Thread creation failed: %d\n", rc2);
}

/* Wait till threads are complete before main continues. Unless we */
/* wait we run the risk of executing an exit which will terminate */

/* the process and all threads before the threads have completed. */

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

exit(0);

}

void *functionC()

{

pthread_mutex_lock(&mutex1);
counter++;

printf("Counter value: %d\n",counter);

pthread_mutex_unlock(&mutex1);
}

Operating Systems

Compile mutex1.c and run

Compile: gcc -lpthread mutex1.c

Run: ./a.out

Results:
Counter value: 1

Counter value: 2

http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_mutex_lock
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_mutex_unlock

5

Operating Systems

THIS IS ALL ABOUT THREADS!

