Classical Synchronization
Problems

Operating Systems

Implementation of Producer-consumer Shared
Bounded-Buffer Problem Using Semaphore

m Each of N buffer places can hold one data item
® Implementation:

e Use binary semaphore mutex to establish
mutual exclusion on buffer update, initialized
tol

e Use a multi-value semaphore full to
implement item consumption, initialized to 0

e Use a multi-value semaphore empty to
implement item production, initialized N.

Operating Systems

Bounded Buffer Problem (Cont.)

B The structure of the consumer process
do {
wait (full); //queue if O
wait (mutex);
/I remove an item from buffer
signal (mutex);
signal (empty); //allow producer to produce, if any
/I consume the removed item
} while (true);

Operating Systems

Classical mutual exclusion problems

mBounded(N places)-Buffer
mReaders and Writers

m Dining-Philosophers

m Sleeping Barber

m Dining-Philosophers Problem
Solution using monitors

Operating Systems

Bounded Buffer Problem (Cont.)

m The structure of the producer process
do {
/I produce an item
wait (empty); // queued if O
wait (mutex);
/I add the item to the buffer
signal (mutex);
signal (full); //allow consumer to consume if any
} while (true);

Operating Systems

Implement Readers-Writers Problem using
Semaphore

® A data set is shared among a number of concurrent reader and writer
processes

e Readers — only read the data set; they do not perform any updates
e Writers — write the data item to be read by the readers
® Design algorithm:
e multiple readers can read an item, if exist, concurrently with no protection
e Writer(s) can only write data item in mutual exclusion
o Awriter and a reader can write and read in mutual exclusion
® Modeling Shared Data
Data set: item
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1

Integer readcount is readers shared memory, initialized to 0: it counts
number of readers in the process of reading.

Operating Systems

Readers-Writers Problem (Cont.) Readers-Writers Problem (Cont.)

m writer process: should write only if there is no active = The structure of a reader process
reader do {
wait (mutex) ;
do { readcount ++ ;
wait (wrt) ; // no limit on number of items if (readercount == 1) wait (wrt) ;

signal (mutex)

/I writing item is performed I reading item is performed
. wait (mutex) ;
signal (wrt) ; readcount - - ;

} while (true) if redacount == 0) signal (wrt) ;

signal (mutex) ;
} while (true)

Operating Systems Operating Systems

pining-rFniosopners rrooiem: o

philosopher dine and think . .)
Dining Philosophers: First Try

#define N 5 /* number of philosophers */

5 Chinese philosophers dine and void philosopher(int i) /* i: philosopher number, from 0 io 4 */

think randomly. hile (TRUE) {
wihni

think(); /* philosopher is thinking */
take _fork(i); /* take left fork */
take_fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i): /* put left fork back on the table */
. ;) ut_fork((i+1) % N); /* put right fork back on the table =/
® Modeling: functions: think(), eat(), take_fork(), put_fork()] put_fork((i1) % N) putrg
e Share Data set: }
gechictice Is this solution correct? No control over the state of
» 5 chopsticks: Semaphore fork [5], initialized to 1 the forks!
Operating Systems Operating Systems
Dining Philosophers: Correct Try: Control over the Dinina Philosophers
state of the foks 9 P
void take_forks(int i) /* i philosopher number, from 0 1o N-1 =/
#define N 5 /* number of philosophers =/ {
#define LEFT (i+N-1)%N /* number of i's left neighbor =/ down(&mutex); /+ enter critical region */
#define RIGHT (i+1)%N /* number of i's night neighbor */ state[i] = HUNGRY; /* record fact that philosopher i is hungry */
#define THINKING 0 /= philosopher is thinking =/ tesi(i); * Iry 10 acquire 2 forks */
#define HUNGRY 1 /* philosopher is trying to get forks =/ up{&mutex); I exit critical region +/ ‘
#define EATING 2 /+ philosopher is eating */ down(&s[i); /= block if forks were not acquired =/
typedef int semaphore; /= semaphores are a special kind of int */)
int state[N]: /= array to keep track of everyone's state =/ void put_forks(i) /* i: philosopher number, from 0 10 N-1 */
semaphore mutex = 1; /* mutual exclusion for critical regions */ {
semaphore s[NJ; /+ one semaphaore per philosopher */ duw“[f]&m'lrn:mkme " Ep‘!ff Emr::ﬂlr:egl?lﬂl‘;ed
state[l] = : /+ philosopher has finished eating */
void philosopher(int i) /= i: philosopher number, from 0 to N-1 =/ tesLEFT) I g;e it |§t neighbor can now agt -
test{RIGHT); I+ see if right neighbor can now eat */
while (TRUE) { /* repeal forever =/ up(&mutex); /* exit critical region */
think(); /= philosopher is thinking =/ }
take_forks(i); /= acquire two forks or block =/ . . .
eat(): /* yum-yum, spaghetti */ void test(i) /+ it philosopher number, from 0 to N-1 */
put_forks(); ¥ put Bathifarks Back on tafile s/ if (state[i] == HUNGRY && state[LEFT] = EATING && state[RIGHT] 1= EATING) {
state[i] = EATING:

} up(&s{i]);
)
Solution to dining philosophers problem (part 1) }

) Solution to dining phil h bl rt 2
Note that mutex controls all CSs; S[i] are initially set to 0 olution to dining philosophers problem (part 2)

Operating Systems Operating Systems

Sleeping Barber

et
—

Operating Systems

Problems with Semaphores

m Correct use of semaphore operations is not
easy.

m Omitting of wait (mutex) or signal (mutex) or
both is cause of incorrect solutions.

Operating Systems

Schematic view of a Monitor

operatons /

initialization
code

Operating Systems

o=

==

The Sleeping Barber Problem (2)

ndefine CHAIRS 5
typedef int semaphore:
‘semaphore customers = 0;
‘samaphars barbers = 0;
semaphare mulex = 1,

int waiing = 0,

void barbervoid)

while (TRUE) {

J+ % chais for wailing custamers
I 136 your imagination

f+ # of customers waiting for service =/
/4 of barbers waiting for customers =/

1+ for mulual exclision +/
1+ cusiomers are wailing {nat being cut) */

as

down{&mutex); = acquire access lo ‘waiting +/
walting = Waing — 1 /+ GECrEMENt Count of waiting Custamers +/
up(&barbers): '« one barber is now ready to cul hair =
up(&mutex) I release ‘wailing’ ~/
cut_nair) 4 CUt Naif (0uls e critical region) +7
b
1
void customer(void)
downi&mutex); = enter crtical regian ~/
if (waiting < CHAIRS) { I it there are no free chairs. leave +
waiting = wating + 1 f+ increment count of waiting customers +
up(Beusiomers). = wake up barber il necessary =/
up(&mutex): « release access 10 waiting +/
\' B0
gel_haircutl); = be seated and be serviced +/
}eise {
up(&mutex): f+ shop & full; do not wail *

1

Operating Systems

Monitors: A higher level synchronization
construct

®m A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

® Only one process may be active within the monitor at a
time
monitor monitor-name

{

/I shared variable declarations
procedure P1(...){....}

procedure Pn (...) {...... }
Initialization code (....){... }

Operating Systems

Condition Variables and dining
philosophers
| condition X, y;

B Two operations on a condition
variable:

ex.wait () — a process that invokes
the operation is suspended.

ex.signal () — resumes one of
processes (if any) that invoked
x.wait ()

Operating Systems

Monitor with Condition Variables

entry queue

X vl
i

1n-h

operations

lqueues associated with
X, y conditi

Operating Systems

Monitor Solution to Dining Philosophers (cont)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {
state[i] = EATING ;
selffi].signal () ;
}
}

initialization_code() {
for (inti=0;i<5;i++)
state[i] = THINKING;

Operating Systems

Mutex example program: mutexi.c

Solution to Dining Philosophers: Monitor
Solution

monitor DiningPhilosopher
{
enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];
void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] = EATING) self [i].wait;
}
void putdown (int i) {
state[i] = THINKING;
Il test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);
}

Operating Systems

Thread examples: MUTEX

Operating Systems

Compile mutexi.c and run

Operating Systems

Operating Systems

http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_mutex_lock
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_mutex_unlock

THIS IS ALL ABOUT THREADS!

