
1

Operating Systems

Classical Synchronization

Problems

Operating Systems

Bounded(N places)-Buffer

Readers and Writers

Dining-Philosophers

Sleeping Barber

Dining-Philosophers Problem

Solution using monitors

Classical mutual exclusion problems

Operating Systems

Implementation of Producer-consumer Shared

Bounded-Buffer Problem Using Semaphore

 Each of N buffer places can hold one data item

 Implementation:

Use binary semaphore mutex to establish

mutual exclusion on buffer update, initialized

to 1

Use a multi-value semaphore full to

implement item consumption, initialized to 0

Use a multi-value semaphore empty to

implement item production, initialized N.

Operating Systems

Bounded Buffer Problem (Cont.)

 The structure of the producer process

do {

// produce an item

wait (empty); // queued if 0

wait (mutex);

// add the item to the buffer

signal (mutex);

signal (full); //allow consumer to consume if any

} while (true);

Operating Systems

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

do {

wait (full); //queue if 0

wait (mutex);

// remove an item from buffer

signal (mutex);

signal (empty); //allow producer to produce, if any

// consume the removed item

} while (true);

Operating Systems

Implement Readers-Writers Problem using

Semaphore

 A data set is shared among a number of concurrent reader and writer

processes

 Readers – only read the data set; they do not perform any updates

 Writers – write the data item to be read by the readers

 Design algorithm:

 multiple readers can read an item, if exist, concurrently with no protection

 Writer(s) can only write data item in mutual exclusion

 A writer and a reader can write and read in mutual exclusion

 Modeling Shared Data

 Data set: item

 Semaphore mutex initialized to 1

 Semaphore wrt initialized to 1

 Integer readcount is readers shared memory, initialized to 0: it counts

number of readers in the process of reading.

2

Operating Systems

Readers-Writers Problem (Cont.)

 writer process: should write only if there is no active

reader

do {

wait (wrt) ; // no limit on number of items

// writing item is performed

signal (wrt) ;

} while (true)

Operating Systems

Readers-Writers Problem (Cont.)

 The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readercount == 1) wait (wrt) ;

signal (mutex)

// reading item is performed

wait (mutex) ;

readcount - - ;

if redacount == 0) signal (wrt) ;

signal (mutex) ;

} while (true)

Operating Systems

Dining-Philosophers Problem: 5

philosopher dine and think

 Modeling: functions: think(), eat(), take_fork(), put_fork()

 Share Data set:

 Bowl of rice

 5 chopsticks: Semaphore fork [5], initialized to 1

5 Chinese philosophers dine and

think randomly.

Operating Systems

Dining Philosophers: First Try

Is this solution correct? No control over the state of
the forks!

Operating Systems

Dining Philosophers: Correct Try: Control over the

state of the foks

Solution to dining philosophers problem (part 1)

Note that mutex controls all CSs; S[i] are initially set to 0

Operating Systems

Dining Philosophers

Solution to dining philosophers problem (part 2)

3

Operating Systems

Sleeping Barber

Operating Systems

The Sleeping Barber Problem (2)

waiting is shared data item.

Operating Systems

Problems with Semaphores

 Correct use of semaphore operations is not

easy.

 Omitting of wait (mutex) or signal (mutex) or

both is cause of incorrect solutions.

Operating Systems

Monitors: A higher level synchronization

construct

 A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

 Only one process may be active within the monitor at a
time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

}

Operating Systems

Schematic view of a Monitor

Operating Systems

Condition Variables and dining

philosophers

 condition x, y;

Two operations on a condition

variable:

x.wait () – a process that invokes

the operation is suspended.

x.signal () – resumes one of

processes (if any) that invoked

x.wait ()

4

Operating Systems

Monitor with Condition Variables

Operating Systems

Solution to Dining Philosophers: Monitor

Solution

monitor DiningPhilosopher

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

Operating Systems

Monitor Solution to Dining Philosophers (cont)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

Operating Systems

Thread examples: MUTEX

/* mutex are only valid within the same process */

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

int counter=0;

/* Function C */

void functionC()

{

pthread_mutex_lock(&mutex1);

counter++

pthread_mutex_unlock(&mutex1);

}

Operating Systems

Mutex example program: mutex1.c

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>

void *functionC();
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

int counter = 0;

main()

{

int rc1, rc2;
pthread_t thread1, thread2;

/* Create independent threads each of which will execute functionC */

if((rc1=pthread_create(&thread1, NULL, &functionC, NULL)))

{
printf("Thread creation failed: %d\n", rc1);

}

if((rc2=pthread_create(&thread2, NULL, &functionC, NULL)))

{

printf("Thread creation failed: %d\n", rc2);
}

/* Wait till threads are complete before main continues. Unless we */
/* wait we run the risk of executing an exit which will terminate */

/* the process and all threads before the threads have completed. */

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

exit(0);

}

void *functionC()

{

pthread_mutex_lock(&mutex1);
counter++;

printf("Counter value: %d\n",counter);

pthread_mutex_unlock(&mutex1);
}

Operating Systems

Compile mutex1.c and run

Compile: gcc -lpthread mutex1.c

Run: ./a.out

Results:
Counter value: 1

Counter value: 2

http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_mutex_lock
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_mutex_unlock

5

Operating Systems

THIS IS ALL ABOUT THREADS!

