
1

Operating Systems

Inter-process Communication

IPC involves facilitating explicit or 

implicit cooperation

How does OS facilitates IPC

What is involves in IPC 

Operating Systems

IPC Synchronization

The Critical-Section Problem

Software Solutions

Hardware support 

Semaphores

Monitors

Synchronization Examples 

Operating Systems

Critical Section Example: Implementation

of Producer Consumer problem

 Suppose that we want to fill all the shared buffer cells. 

 Use an integer count that keeps track of the number of 

full buffers.  

 Initially, count is set to 0. 

 It is incremented by the producer after it produces a 

new buffer entry,

 It is decremented by the consumer after it consumes 

a buffer entry.

 Note: previous implementations were  based on use of 

n-1 cells out of n cells of the buffer. 

Operating Systems

Producer: Earlier Algorithm 

while (true) 

/* produce an item and put in 

nextProduced

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}   

Operating Systems

Consumer: Earlier  Algorithm

while (1) 

{

while (count == 0)

; // do nothing

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/*  consume the item in nextConsumed

}

Operating Systems

Any Problems?

 What are the data structures shared?

 BUFFER

 COUNT

 IN

 OUT

 Any process may be interrupted because of many reasons, 

controlled by the processes and the operating system.

 Few reasons

 Time sharing interrupt

 I/O  start or completion interrupt

 Alarm interrupt,

 Etc..



2

Operating Systems

Race Condition!

Especially update of the shared objects used to control the 

sharing of other resources

 Shared variable count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

 Share variable count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}

Operating Systems

Solving the shared memory problem: First try: 
Alternating use of critical region

Operation on the shared variable are named 
as “Critical Section”

initialize turn=0

do {
while (turn is not equal to 0) ;
critical section
turn = 1;
remainder section

} while(1); 

do {
while (turn is not equal to 1) ;
critical section
turn = 0;
remainder section

} while(1); 

Operating Systems

Solution to Critical-Section Problem

Required Conditions of using Critical Sections: 

1. Mutual Exclusion - If process Pi is executing in its critical section, then 

no other processes can be executing in their critical sections

2. Progress - If no process is executing in the critical section and there 

exist some processes that wish to enter the critical section, then the 

selection of the processes that will enter the critical section next, cannot 

be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that 

other processes are allowed to enter the critical sections after a 

process has made a request to enter the critical section:

l Assume that each process executes at a nonzero speed 

l There is no assumption concerning relative speed of the executing

processes

Operating Systems

Software Solution: Example: Peterson’s 

Critical Section Solution

n Assume there are two independent but concurrent
processes compete to enter the critical section

n Whichever is ready is able to enter the CS.

n Solution:

l The two processes share two variables:

int turn; it indicates whose turn it is to enter the 
critical section. 

Boolean flag[2]: it is used to indicate if a process is 
intending or ready to enter the critical section; initially 
it is set to false. 

(flag[i] == true) implies that process Pi is ready!

Operating Systems

Peterson’s Algorithm for Process Pi (0 or 1)

do {

flag[i] = TRUE;

turn = j;

while ( flag[j] && turn == j);

CRITICAL SECTION

flag[i] = FALSE;

REMAINDER SECTION

} while (TRUE);

Operating Systems

Critical Section solution for n 
processes: 

Bakery Algorithm
Processes take consistent and unique numbers 

first; 

Principle: the smallest number process can enter the 

critical section. 

Data structures used:

1. choosing: shared array[0..n-1] of boolean; 

2. number: shared array[0..n-1] of integer; ... 



3

Operating Systems

Bakery Algorithm: Pceudo Code

3 repeat // process i takes unique number

4 choosing[i] := true; 

5 number[i] := max(number[0],number[1],...,number[n-1]) + 1; 

6 choosing[i] := false; 

// Check if it is possible to enter the Critical Section

7 for j := 0 to n-1 do begin

8 while choosing[j] do (* nothing *); 

9 while number[j] <> 0 and (number[j], j) < (number[i],i) do 

10 (* nothing *); 

11 end; 

// enter the critical section

12 (* critical section *) 

// leave the critical section

13 number[i] := 0; 

14 (* remainder section *) 

15 until false; 

"(a,b) < (c,d)" anlamı if a < c or if a = c and b < d 

Operating Systems

Why hardware support?

Process synchronization must  

guarantee safety and efficiency

•Software solutions are insecure 

and slow

•This is why hardware support is 

required

Operating Systems

Process Synchronization
 Many systems provide hardware support for critical section code.  The 

hardware support is used to implement correct  CS  solutions in 
software. Otherwise, software solutions cannot be guaranteed across 
different hardware platform.

 One such hw support is interrupt disable /enable pair of instructions

 Generally this is too inefficient on  even in uniprocessor platforms, let 
alone multiprocessor ones.

 Modern machines provide special atomic (indivisible) hardware 
instructions, for such purposes.

 Atomic = non-interruptable

 For example, test a memory word and set to a value as one 
instruction: such as Test&Set(&a) instruction

 Or swap contents of two memory words as one instruction: such as 
Swap(&a,&b)

Operating Systems

TestAndSet Instruction 

n Definition Algorithm: Indivisible

boolean TestAndSet (boolean
*target) // target is global

{

boolean rv = *target;

*target = TRUE;

return rv:

}

Operating Systems

Critical Section Solution using 

TestAndSet

 Lets use Shared global Boolean variable lock as a key to the 
critical section, initialized to false. Lock is the parameter to 
TestandSet instruction. 

 How to use this instruction to act as the key to CS problem?

 Solution:

do {

while ( TestAndSet (&lock ))

;   /* do nothing

//    critical section

lock = FALSE;

//      remainder section 

} while ( TRUE);

Operating Systems

Indivisible Swap  Instruction

Definition Algorithm: swap a and b :

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}



4

Operating Systems

CS Solution using Swap

 Lets use Shared Boolean variable lock initialized to 
FALSE; 

 Each process has a local Boolean variable key, and 
lock as global variable.

 Solution:

do {

key = TRUE;

while ( key == TRUE)  Swap (&lock, &key );

//    critical section

lock = FALSE;

//      remainder section 

} while ( TRUE);

Operating Systems

Semaphore: Higher Level Syncronization

tool
 Synchronization tool that may prevent busy waiting 

 Semaphore is a special integer variable, say S

 Two standard indivisible operations modify S: wait() and signal()

 Originally called P() and V()

 Semaphore Can only be accessed via two OS provided indivisible (atomic) 
operations (or functions)

On entrance to Critical Section (CS):

 wait (S) { 

while S <= 0

; // no-op, busy wait

S--;

}

On completion of CS:

 signal (S) { 

S++;

}

Operating Systems

Semaphore type

 Counting semaphore: integer value can range over an 

unrestricted integer domain

 Binary semaphore: integer value can range only between 0 

and 1; can be simpler to implement

 Also known as mutex locks

 Counting semaphore S with 0 and 1 values, can be used as 

a binary semaphore, to provides mutual exclusion

 Semaphore S;    //  initialized to 1

 wait (S);

Critical Section

signal (S);

Operating Systems

Semaphore Implementation

 Must guarantee that no two processes can execute 

wait () and signal () on the same semaphore at the 

same time

 Thus, implementation becomes the critical section 

problem where the wait and signal code are placed 

in the crtical section.

wait and signal implementations are with busy 

wait

but, it requires very small busy waiting 

 Applications can use busy wait iplementations, 

provided the busy wait is short…

Operating Systems

None Busy Wait Semaphore Implementation

 With each semaphore there is an associated 

waiting queue. Each entry in a waiting queue has 

two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 Block: place the process invoking the operation 

on the      appropriate waiting queue.

 Wakeup: remove one of processes in the 

waiting queue and place it in the ready queue.

Operating Systems

Semaphore with Non Busy waiting (Cont.)

 Each semaphore initialized to an integer 
value and a queueing process…

 Implementation of wait:

wait (S)

{ 

S.value--;

if (S.value < 0) 

{ add  P to S.waitQueue(P);  }

}



5

Operating Systems

Semaphore with Non Busy waiting (Cont.)

 Implementation of signal:

Signal (S)

{ 

S.value++;

if (S.value >= 0)

{ remove a  Process P

from S.waitQueue (P);  }

}

Operating Systems

Problametic Semaphores Use

 Deadlock – two or more processes are waiting indefinitely for 
an event that can be caused by only one of the waiting 
processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);. .

CS CS

signal  (S); signal (Q);

signal (Q); signal (S);

 Bad Scenario: P0 grabs wait(S), P1 grabs wait(Q) before P0 
can do it..

 Starvation – indefinite blocking.  A process may never be 
removed from the semaphore queue in which it is suspended.

Operating Systems

Correct  Semaphores Use

 Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (S);

wait (Q); wait (Q);. 

CS CS

signal  (S); signal (S);

signal (Q); signal (Q);

 P0 grabs S on wait(S), P1 waits for S at wait(S) until it 
released by the related Signal(S)..

 No Starvation – No blocking.  P1 will be added to 
S.WaitQueue,; P1 will be removed by P0’s execution of 
Signal(S) and will be put on the ReadyQueue.


