
Operating System

Processes

Operating Systems

Operating System

Processes

Concept

Scheduling

Interprocess Communication

Operating System

Process Concept

Operating System

Process in Memory

Operating System

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some

event to occur

 ready: The process is waiting to be

assigned to a process

 terminated: The process has finished

execution

Operating System

Diagram of Process State

Operating System

Process Control Block (PCB)

Operating System

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information
 Pointers to code and data
 Process identifier (PID)
 Process priority
 File descriptors
 Pointer to the parent of the process

 Pointers to all children of the process

 The processor it is running on

Operating System

The Process Model: one CPU

a) Multiprogramming of four programs

b) Conceptual model of 4 independent, sequential
processes

c) Only one program active at any instant

Operating System

How to give illusion of multiple processors?

vCPU3 vCPU2 vCPU1

Shared Memory

• Assume a single processor. How do we provide the illusion
of multiple processors?

• Multiplex in time!

• Each virtual “CPU” needs a structure to hold:

• Program Counter (PC), Stack Pointer (SP)

• Registers (Integer, Floating point, others…?)

• How to switch from one virtual CPU to the next?

• Save PC, SP, and registers in current state block

• Load PC, SP, and registers from new state block

• What triggers switch?

• Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Operating System

Switching Processes

CPU is switched between the

processes

Save the “real world” of the currently

active process in process table

Restore the “real world” from the

process table of the selected process

(the one to be executed next)

Operating System

Process Representation in Linux

 Represented by the C structure task_struct

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information

*/

struct task_struct *parent; /* this process’s
parent */

struct list_head children; /* this process’s
children */

struct files_struct *files; /* list of open files

*/

struct mm_struct *mm; /* address space of this

process */

Operating System

Shared Code

 The shared code must be re-entrant (ie., it must not modify itself)

Shared Code

Data 1

PCB 1

Data 2

PCB 2

Operating System

Process States: related operations-1

 Create
 A process is created by an existing process

(parent/child); a process is created by a service, or
as a new batch job, or an interactive logon

 Terminate
 Normal completion (exit); External completion

(forced completion: by operator, by parent);
Internal completion (error, time overrun)

 Schedule
 A process is selected out of the ready queue (is

scheduled) and dispatched to the running state

 Pre-empt
 The running process is pre-empted because some

other process of higher priority has become ready
(or it yields)

Operating System

Process States: related operations-2

 Suspend

 A process starts a time consuming IO operation, or

is swapped out, or makes a spontaneous request

to sleep, or is blocked in a synchronization

operation. When a process is suspended, it is on

some queue, namely the queue of all the

processes waiting for the same resource.

Processes during their life move from queue to

queue, with stays in the running state

 Continue

 The inverse of Suspension: the resource

requested becomes available (timer, IO

completes, unblocking)

Operating System

Implementation of Processes:

Typical Process Table

Fields of a process table entry

Operating System

Process Scheduler

Scheduler:

The lowest operating system layer

handles interrupts and does

scheduling

The higher layers maintain all other

process related tasks, such as

accounting, logging, etc.

Operating System

Implementation of Process Switch

 Skeleton of what lowest level of OS does when an interrupt

occurs

Operating System

Context Switching Overhaed

 When CPU switches to another process, the

system must save the state of the old process and

load the saved state for the new process

 Context-switch time is overhead; the system does

no useful work while switching

 Time is dependent on hardware support and its

speed

Operating System

CPU Switch From Process to Process

Operating System

Process Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory,

ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

Operating System

Process Queues

Operating System

Scheduling Levels

 Short-term scheduler (or CPU scheduler) –

selects which process in he ready queue should be

executed next and allocates CPU

 Mid-term scheduler: Select which partially

executed process should be brougt into the ready

queue.

 Long-term scheduler (or job scheduler) – selects

which processes should be brought into the ready

queue

Operating System

Representation of Short Term Process

Scheduling

Operating System

Graphical Representation of Medium Term

Scheduling

Operating System

Schedulers (Cont.)

 Short-term scheduler is invoked very frequently (milliseconds)

(must be fast)

 Mid-term scheduler is invoked if the degree of multiprogramming

falls beyond certain threshold.

 Long-term scheduler is invoked very infrequently (seconds,

minutes) (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts

 CPU-bound process – spends more time doing computations;

few very long CPU bursts

Operating System

Process Creation

 Parent process create children processes, which,

in turn create other processes, forming a tree of

processes

 Resource sharing

 Children share subset of parent’s resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

Operating System

Process Creation (Cont.)

 Address space

Child is duplicate(Clone) of parent Child

has a program loaded into it

 UNIX examples

 fork system call creates new process,

which is duplicate of the parent in terms

of program in execution

Operating System

A typical parent child relationship

Operating System

Process Termination

 Process executes last statement and asks the operating system to delete it (exit())

 Output data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort())

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating systems do not allow child to continue if its parent terminates

– All children terminated - cascading termination

 Wait for termination, returning the pid:

pid t pid; int status;

pid = wait(&status);

 If no parent waiting, then terminated process is a zombie

 If parent terminated, processes are orphans

Operating System

Multiprocess Architecture – Chrome Browser

 Many web browsers ran as single process (some still do)

 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multiprocess with 3 categories

 Browser process manages user interface, disk and network I/O

 Renderer process renders web pages, deals with HTML, Javascript, new

one for each website opened

 Runs in sandbox restricting disk and network I/O, minimizing effect of

security exploits

 Plug-in process for each type of plug-in

Operating System

How to Create New Processes? Fork & Exec

 fork

 create a new process that is a copy of

current one

 exec

 change the program that a process is

executing

 Some Oss combine the two into one system

call…

Operating System

fork() system call

 Using fork() system call the parent process divides
itself into two identical processes.

 When a process forks, a complete copy of the
executing program is made into the new process.

 This new process (which is a child of the parent) has
a new process identifier (PID).

 The fork() function returns the child's PID to the
parent, while it returns 0 to the child, in order to allow
the two identical processes to distinguish one another.

 The parent process can either continue execution or
wait for the child process to complete.

Operating System

A Tree of Processes in Linux

i ni t

pi d = 1

s s hd

pi d = 3028

l ogi n

pi d = 8415
kt hr e add

pi d = 2

s s hd

pi d = 3610
pdf l us h

pi d = 200

khe l pe r

pi d = 6

t c s c h

pi d = 4005
e mac s

pi d = 9204

bas h

pi d = 8416

ps

pi d = 9298

Operating System

C Program example: fork()

int main()

{

Pid_t pid;

 /* fork another process */

 pid = fork();

 if (pid < 0) { /* error occurred */

 fprintf(stderr, "Fork Failed");

 exit(-1);

 }

 else if (pid == 0) { /* child process */

 execlp("/bin/ls", "ls", NULL);

 }

 else { /* parent process */

 /* parent will wait for the child to complete */

 wait (NULL);

 printf ("Child Complete");

 exit(0);}}

Operating System

execxx() Family of System Calls

 The exec family functions of Unix-like operating
systems cause the running process to be completely
replaced by the program passed as an argument to
the function.

 As a new process is not created, the process
identifier (PID) does not change, but the data, heap
and stack of the original process are replaced by
those of the new process.

 Exec() family functions: execl, execle, execlp, execv,
execve, and execvp,

 The new process image inherits the current
environment variables.

Operating System

C Program: exec() family system Calls

 Prototypes of exec() family system calls:

 The functions are declared in the unistd.h header for the POSIX standard.

int execl(char const *path, char const *arg0, ...);

int execle(char const *path, char const *arg0, ..., char const * const
*envp);

int execlp(char const *file, char const *arg0, ...);

int execv(char const *path, char const * const * argv);

int execve(char const *path, char const * const *argv, char const *
const *envp);

int execvp(char const *file, char const * const *argv);

Operating System

Example C programs for exec system calls-1

 execl()

 The following example executes the ls

command, specifying the pathname of the

executable (/bin/ls) and using arguments

supplied directly to the command.

#include <unistd.h>

int ret;

...

ret = execl ("/bin/ls", "ls", "-l", (char *)0);

Operating System

Example C programs for exec system calls-2

 execle()

 The following example is similar to Using

execl(). In addition, it specifies the environment

for the new process image using the env

argument.

#include <unistd.h>

int ret;

char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char *)0 };

...

ret = execle ("/bin/ls", "ls", "-l", (char *)0, env);

Operating System

Example C programs for exec system calls-3

 execlp()

 The following example searches for the

location of the ls command among the

directories specified by the PATH environment

variable.

#include <unistd.h>

int ret;

...

ret = execlp ("ls", "ls", "-l", (char *)0);

Operating System

Example C programs for exec system calls-4

 execv()

 The following example passes arguments to

the ls command in the cmd array.

#include <unistd.h>

int ret;

char *cmd[] = { "ls", "-l", (char *)0 };

...

ret = execv ("/bin/ls", cmd);

Operating System

Example C programs for exec system calls-5

 execve()

 The following example passes arguments to the ls

command in the cmd array, and specifies the environment

for the new process image using the env argument.

#include <unistd.h>

int ret;

char *cmd[] = { "ls", "-l", (char *)0 };

char *env[] = { "HOME=/usr/home", "LOGNAME=home", (char

*)0 };

...

ret = execve ("/bin/ls", cmd, env);

Operating System

Example C programs for exec system calls-6

 execvp()

 The following example searches for the location of

the ls command among the directories specified by

the PATH environment variable, and passes

arguments to the ls command in the cmd array.

#include <unistd.h>

int ret;

char *cmd[] = { "ls", "-l", (char *)0 };

...

ret = execvp ("ls", cmd);

Operating System

A tree of processes on a typical Solaris

OS

Operating System

Process Termination

 Process executes last statement and asks the operating system to

delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its

parent terminates

– All children terminated - cascading termination

Operating System

Process Cooperation

Operating System

Meaning of Process Cooperation

 Independent process cannot affect or be affected by the execution

of another process

 Cooperating process can affect or be affected by the execution of

another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

 Necessity

Operating System

Producer-Consumer Problem

 Cooperation must be supported by the operating

systems.

 A buffer need to be implemented between the

producer and consumer to hold the data to be

exchanged.

 There are two bufering methodologies

 unbounded-buffer places no practical limit on the

size of the buffer

 bounded-buffer assumes that there is a fixed buffer

size. This is a realistic approach.

However, the right size of buffer is important. We

should not have excessive or insufficient buffer .

Operating System

Bounded-Buffer Management: Shared-Memory Solution

 Shared data: C Language like Implementation

#define BUFFER_SIZE 10

Typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Operating System

Bounded-Buffer:

 Insert() Method: producer process

 while (true) {

 /* Produce an item */

 while (((in + 1) % BUFFER SIZE) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER SIZE;

 {

 Solution is correct, but can only use BUFFER_SIZE-

1 elements

Operating System

Bounded-Buffer:

Remove() Method: consumer process

 while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

 {

Operating System

Inter-Process Communication

 Buffer sharing is IPC.

 IPC must have necessary mechanisms for

processes to communicate and to synchronize.

 There are two main paradigms for IPC

 Shared memory based: Buffer sharing is an

example to this.

Message based: no shared memory

Operating System

IPC: message based

 Messaging provides two operations:

 send(message) – message size fixed or
variable

 receive(message)

 This is need to be facilitated by the OS

 How?

Operating System

IPC Models: (a) kernel level buffer, (b)

user level buffer

Operating System

Shared Memory Communication in UNIX

Pipe() system call: pipe();

PROTOTYPE:

int pipe(int fd[2]);

 RETURNS: 0 on success

 -1 on error: errno = EMFILE (no free descriptors)

 EMFILE (system file table is full)

 EFAULT (fd array is not valid)

•Two file descriptors are created: fd[0] i for reading, fd[1] for

writing

•the “pipe“ function is defined in the <unistd.h>

Operating System

Chaotic use of pipe()!

• Let a process create a pipe, then a child, then both processes

share expected to communicate

• Their writes are merged in the pipe, reads are intermixed! This is

a chaotic situation.

Operating System

Example on Correct use of pipe

Operating System

A full C Program on Pipe() system call

 Excerpt from "Linux Programmer's Guide - Chapter 6"

 MODULE: pipe.c

 ***/

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(void)

{

 int fd[2], nbytes;

 pid_t childpid;

 char string[] = "Hello, world!\n";

 char readbuffer[80];

 pipe(fd);

 if((childpid = fork()) == -1)

 {

 perror("fork");

 exit(1);

 }

 if(childpid == 0)

 {

 /* Child process closes up input side of pipe */

 close(fd[0]);

 /* Send "string" through the output side of pipe */

 write(fd[1], string, (strlen(string)+1));

 exit(0);

 }

 else

 {

 /* Parent process closes up output side of pipe */

 close(fd[1]);

 /* Read in a string from the pipe */

 nbytes = read(fd[0], readbuffer, sizeof(readbuffer));

 printf("Received string: %s", readbuffer);

 }

 return(0);

}

Operating System

Redirection in pipe()

• Redirection of an input or an output

descriptor is done by overwriting it with a

new file descriptor;

• Practical Example:

• redirection of stdout to the pipe’s output

descriptor, or

• redirection of stdin to the pipe’s input

descriptor.

Operating System

dup() system call

• Using dup() system call, the file descriptors are duplicated, such that

two descriptors will have the same affect.

• The dup() system call gets the lowest-numbered unused descriptor.

• Thus, dup() can be used to redirect standard I/O (STDOUT, STDIN) as

well. If needed. They firse closed, before the use of dup().

SYSTEM CALL: dup();

 PROTOTYPE: int dup(int oldfd);

 RETURNS: new descriptor on success

 -1 on error: errno = EBADF (oldfd is not a valid descriptor)

 EBADF (newfd is out of range)

 EMFILE (too many descriptors for the process)

• the old descriptor is not closed. Both may be used interchangeably

Operating System

dup2()

• Dup2() function is also defined in the <unistd.h> header

• It uses the new file descriptor provided by the user, for redirection

• Format:

int dup2 (source fd, target fd)

the call returns –1 on error

• Example:

if (dup2 (fd[1], stdout) < 0)

 perror (“redirection err”);

• The effect of the above is the same with the following:

close(1);

if (dup (fd[1]) < 0)

 perror (“redirection err”);

Operating System

Message Based Direct Communication

 Processes must name each other explicitly: For

example, for process P and Q to communicate:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from

process Q

 Such a communication link need to be implementated

by OS

Operating System

Indirect Communication

 Messages are directed and received from mailboxes (also referred

to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Mailboxes can be created OS

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several mailboxes

 Such communication may be unidirectional or bi-directional

 Example syntax

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

Operating System

IPC Synchronization

 IPC-Inter Process Communication may be either blocking

or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the

message is received

 Blocking receive has the receiver block until a

message is available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message

and continue

 Non-blocking receive has the receiver receive a valid

message or null

Operating System

Client-Server Communication

Sockets (universal)

Remote Procedure Calls (classical

UNIX domain IPC)

Remote Method Invocation (Java)

Operating System

Sockets

 A socket is defined as an endpoint for

communication

 Concatenation of IP address and port

 The socket “161.25.19.8:1625” refers to port

1625 on host 161.25.19.8

 Communication is between a pair of sockets:

receiver, sender.

Operating System

Socket Communication

Operating System

Remote Procedure Calls

 Remote procedure call (RPC) abstracts

procedure calls between processes on

networked systems.

 A proxy concept is realized through so called

stubs:

Client side stub acts as a proxy for the actual

procedure on the server, it locates the server and

marshals the parameters.

 Server-side stub receives the message from the

client stub, unpacks the marshaled parameters,

and performs the procedure on the server.

Operating System

Execution of RPC

Operating System

Remote Method Invocation

 Remote Method Invocation (RMI) is a Java mechanism similar to

RPCs.

 RMI allows a Java program on one machine to invoke a method on

a remote object.

Operating System

Marshalling Parameters

Operating System

END

