
1

Operating System Structures

Operating Systems

A View of Operating System Services

Operating System Design

and Implementation

• Internal structure of different Operating Systems

can vary widely…

• Start by defining goals and specifications

– Affected by choice of hardware, type of system

• User goals and System goals

– User goals – operating system should be convenient to

use, easy to learn, reliable, safe, and fast

– System goals – operating system should be easy to

design, implement, and maintain, as well as flexible,

reliable, error-free, and efficient

Operating System Design and

Implementation (Cont.)

• Important principle to separate

 Policy: What to do?

Mechanism: How to do?

• Mechanisms determine how to do something, policies

decide what will be done

– The separation of policy from mechanism is a very

important principle, it allows flexibility if policy decisions

are to be changed later

• Specifying and designing OS is highly creative task.

It is also an important software engineering task.

Implementation

• There are variations in time:

– Early OSs were in assembly language

– Later system programming languages like Algol and

PL/1 are used together with assembly languages/

– Now mostly C and C++ are used

• In reality a mix of languages is used

– Lowest levels close to hardware is in assembly

language, main body is coded in C

– Systems programs are usually coded in C, C++.

– Use of scripting languages like PERL, Python, shell

scripts is possible

Operating System Structure

• General-purpose OS is a very large

program.

• How to structure it is an important

design decision. They may be

structured differently

2

Operating Systems

Possible Types of OS Structures

• Monolithic systems

• Hierarchy of layers

• Virtual machines

• Micro-kernel (client/server) model

Operating Systems

Monolithic System

• OS has no structure. It is a collection of procedures

with well defined calling interfaces to them…

• Appication - OS interface is implemented via

supervisor calls (SVC). Return from SVC is the

user program

Interrupt

 Handler
Service routine

SVC

Program

Operating Systems

Monolithic System (Cont.)

• OS code is one big object program

(in machine language).

• It’s source code may be logically

divided into

• Main body

• System call service routines

• Utility procedures which help service

routines

Operating Systems

A simple structuring model for a monolithic

system

Operating Systems

What is wrong with such a system?

• OS is one large program.

• Anytime you add a new device you

must
1. get a device driver for the device

2. recompile the kernel with the new device driver

3. reboot the machine so the new kernel will be

used

Operating Systems

Example Structures

3

Operating Systems

Layered System

 “THE” OS (a batch OS)

Operating Systems

Layered System: bottom up

• Process switching, multi programming,
CPU scheduling

• Memory and swap space (disk)
management (“segment controller”)

• Message interpretation, job control (JCL)
functions

• I/O management (virtual peripherals)

• User programs

• Operator

Operating Systems

Layered System (Cont.)

• Synchronisation between layers : Hardware

and software (semaphores) interrupts

• Each layer provides some sort of a “virtual

machine”

Operating Systems

Virtual Machines

Physical Hardware

Virtual Machine

OS1 OS2 OS3 OS4

User Programs

Different OSs can work on the same machine at the

same time…

Operating Systems

Micro-Kernel (Client/Server) Model

• The necessary functions of the OS form a

core, known as Kernel or microkernel.

Operating Systems

Micro-Kernel

• Necessary functions:

– memory management

– basic CPU management

– inter-process communication (messages)

– I/O support

• Other functionality provided by user

level processes, whicj are still

components of OS.

4

Operating Systems

Characteristics of Micro_kernel

• Communication between os components and user

level subsystems makes use of message passing

• Easy to replace server processes

• Easier to write and port OS, as an important

portion of it is outside the kernel

• Design is more suitable for distributed systems, as

different components (file system, memory

management, etc.) are fairly independent

• Higher performance for lower level, but possible

lower performance for higher levels

Few OS Examples:

very short introduction

Operating Systems 1-20

MS-DOS: Simplest OS example

• MS-DOS (MicroSoft Disc Operating

System) – written to provide the

most functionality in the least space

–Not divided into well defined modules

• Although MS-DOS seems to have some

structure, its interfaces and levels of

functionality are not well separated

MS-DOS Layer Structure

BIOS example: A chip or a set of

chips the motherboard

Operating Systems 1-23

A typical motherboard

Operating Systems 1-24

5

Functions of a PC BIOS

Operating Systems 1-25

• POST - Test the computer hardware and make

sure no errors exist before loading the operating

system.

• Bootstrap Loader - Locate the operating system

• BIOS drivers - Low level drivers that give the

computer basic operational control over your

computer's hardware.

• BIOS or CMOS Setup - Configuration program,

to configure hardware settings, such as computer

passwords, time, and date.

UNIX structuring

The UNIX OS consists of two

separable parts

–Systems programs, in the form of

libraries

–The kernel

• Everything below the system-call interface

and above the physical hardware

• Provides core file system, CPU scheduling,

memory management, and other main

operating-system functions

UNIX System Structure Microkernel OS Structure

• Moves as much from the kernel into “user” space

• Communication between user modules is done using

message passing

• Benefits:

– Easier to extend a microkernel

– Easier to port the operating system to new architectures

– More reliable (less code is running in kernel mode)

– More secure

• Detriments:

– Performance overhead of user space kernel space

communication

Modules

• Most modern operating systems

implement kernel modules:

– Uses object-oriented approach

– Each core component is separate

– Each talks to the others over known

interfaces

– Each is loadable as needed within the

kernel

• Overall, similar to layers but with more

flexibility

Hybrid Systems

• Most modern operating systems actually do not

follow just one pure model

– Hybrid combines multiple approaches to address

performance, security, usability needs. Kernel is often

monolithic.

• Apple Mac OSs are hybrid.

• Below is kernel consisting of Mach microkernel and BSD

Unix parts, plus I/O kit and dynamically loadable modules

(called kernel extensions)

6

Mac OS X Structure
graphical user interface

Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called

kernel extensions)

iOS
• Apple mobile OS for iPhone, iPad

– Structured on Mac OS X, added

functionality

– Does not run OS X applications natively

• Also runs on different CPU architecture

(ARM vs. Intel)

– Cocoa Touch Objective-C API for

developing apps

– Media services layer for graphics, audio,

video

– Core services provides cloud computing,

databases

– Core operating system, based on Mac OS X

kernel

Solaris(UNIX) Modular Approach Android

• Developed by Open Handset Alliance

(mostly Google)

– Open Source

• Similar to IOS

• Based on Linux kernel with modification

– Provides process, memory, device-driver

management

– Adds power management

Android (cont.)
• Runtime environment includes core set of

libraries and Dalvik virtual machine

– Apps developed in Java plus Android API

• Java class files compiled to Java bytecode then

translated to executable than runs in Dalvik VM

• Libraries include frameworks for web

browser (webkit), database (SQLite),

multimedia, smaller libc

• Dalvik has been replaced by

ART(AndroidRunTime) starting from

android 5.

Android Architecture1
Applications

Application Framework

Android runtime

Core Libraries

Dalvik

virtual machine

Libraries

Linux kernel

SQLite openGL

surface

manager

webkit libc

media

framework

7

Virtual Machines

• It hides hardware.

• A virtual machine provides a machine

interface based on the underlying bare

hardware.

• A operating system on VM can create the

illusion of multiple processes, each

executing on its own processor with its

own (virtual) memory.

Virtual Machines (Cont.)

• The resources of the physical computer

are shared to create the virtual machines

–CPU scheduling can create the appearance

that users have their own processor

–The file system can provide virtual readers

and virtual line printers

–A normal user time-sharing terminal serves

as the virtual machine operator’s console

Virtual Machines (Cont.)

• The virtual-machine concept

provides complete protection of

system resources since each virtual

machine can be isolated from all

other virtual machines.

• A virtual-machine system is a

perfect vehicle for operating-systems

research and development.

Virtual Machines (Cont.)

• System development is done on the

virtual machine, instead of on a

physical machine and so does not

disrupt normal system operation.

• The virtual machine concept is

difficult to implement due to the

effort required to provide an exact

duplicate to the underlying machine

hardware.

VMware Architecture The Java Virtual Machine

8

Operating-System Debugging

• Debugging is finding and fixing errors, or bugs

• OSs generate log files containing error information

• Failure of an application can generate core dump file

capturing memory of the process

• Operating system failure can generate crash dump file

containing kernel memory

• Beyond crashes, performance tuning can optimize system

performance

– Sometimes using trace listings of activities, recorded for analysis

– Profiling is periodic sampling of instruction pointer to look for

statistical trends

Performance Tuning

• Improve performance

by removing

bottlenecks

• OS must provide

means of computing

and displaying

measures of system

behavior

Operating System Generation

• Operating systems are designed to run on any

machine; the system must be configured for each

specific computer site.

• SYSGEN program obtains information concerning

the specific configuration of the hardware system.

• Booting – starting a computer by loading the

kernel.

• Bootstrap program – code stored in ROM that is

able to locate the kernel, load it into memory, and

start its execution.

System Boot

• Operating system must be made available

to hardware so hardware can start it

– Small piece of code – bootstrap loader,

locates the kernel, loads it into memory, and

starts it

– Sometimes two-step process where boot

block at fixed location loads bootstrap loader

– When power initialized on system, execution

starts at a fixed memory location

• Firmware used to hold initial boot code

