
1

Operating Systems 1-1

Introduction to Operating Systems

Operating Systems 1-2

Introduction

• What is the aim of the subject?

• Why are OSs important?

• What is an OS?

• History

• Basic concepts

Operating Systems 1-3

The Aim of the course

• WILL NOT TEACH YOU HOW TO USE AN

OPERATING SYSTEM.

• WILL HELP YOU TO ACHIEVE AN

UNDERSTANDING OF HOW AN

OPERATING SYSTEM WORKS.

Operating Systems 1-4

Computer System Components

• Application Software : Bank automation system,

airline reservations, payroll etc.

• System Software : OS, data base, compilers,

editors etc.

Operating Systems 1-5

What is SYSTEM SOFTWARE?

• System software provides the

environment and the tools to develop

or create the application software. So,

system software is sort of virtual

machine.

• System software is the interface

between the hardware and the

applications

Operating Systems 1-6

Why is the OS Important?

• The operating system is the

foundation upon which all

computing work is performed.

• Knowledge of the internals of an OS

is essential to achieve efficiency in

– building software applications

– choosing a computing platform

2

Operating Systems 1-7

What is an Operating System?

• A big and complex program

• Converts hardware into a

useable resource

• Provides efficient use of

hardware resources

Operating Systems 1-8

Life without an OS

• Every programmer would

– have to know any hardware (!)

– be able to access the hardware

• Every program would

– contains code to do the same thing (makes

use of hardware)

– Probably every one would reinvenr

America!

Operating Systems 1-9

Where does the OS Fit in a system?

Hardware CPU & Memory
I/O Devices

Operating System

System Calls

Users and User Programs

Operating Systems 1-10

History :HW + software

First Generation (1945-1955)

• Vacuum tubes

• No operating system

• Programming is done by wiring a plug

board

• Applications are mostly numerical

calculations (trajectory computations,

computation of tables such as sine, cosine

etc.)

Transistor and vacuum tube

Operating Systems 1-11 Operating Systems 1-12

History:

Second Generation (1955-1965)

• Transistors

• Commercially produced computers

• Very expensive and very slow computers

compared with your old PC at home

• Batch operation (collect jobs, run in one go,

print all outputs)

3

Operating Systems 1-13

Second Generation: Efficient I/O

• Spooling (Simultaneous Peripheral

Operation On-line)

• off-line spooling

• on-line spooling

• Off-line spooling : replace slow I/O devices

with I/O dedicated computers so that the

main system sees these machines as its I/O

devices

Operating Systems 1-14

Second Generation:Early Batch Systems

• bring cards to 1401
• read cards to tape
• put tape on 7094 which does computing
• put tape on 1401 which prints output

Operating Systems 1-15

A Deck of Cards (Program)

Operating Systems 1-16

Second Generation: Applications and

languages

• Applications were mostly scientific and

engineering calculations (eg., solution of

partial differential equations)

• High level languages such as FORTRAN

COBOL, ALGOL, etc..

Operating Systems 1-17

History:

Third Generation (1965-1980)

• Integrated circuits (small scale) packed as

chips

• I/O processors (channels) which can work

in parallel with CPU - Multiprogramming

Operating Systems 1-18

Multiprogramming system - three jobs in memory

4

Operating Systems 1-19

Multiprogramming system – more than one jobs

in memory

• On-line spooling (using channels)

• Time-sharing (TTY terminals and VDU’s)

• Multics OS - original UNIX on

Minicomputers

• Minicomputers were cheaper than

mainframes but with limited memory anth

other hw units (eg. DEC PDPx)

Operating Systems 1-20

History:

Fourth Generation (1980-1990)

• Large scale integration

• Personal computers

• CP/M, MS DOS, Unix operating systems

• Networks

Operating Systems 1-21

Now!

• Client/Server computation

• Clients : PCs, workstations running under

Windows NT and UNIX like operating

systems

• Servers : workstations systems runinig

under UNIX and Windows NT

• Internet and intranet networking (WWW)

• Cloud computing
Operating Systems 1-22

Important Points

• OS should provide
– a simpler, more powerful interface

– higher level services

• OS services only accessed via system
calls

• Users and programs can’t directly
access the hardware

 Set of System Calls (APIs) is what
programs think the operating system is.

Operating Systems 1-23

UNIX like OS Concepts

•Kernel

–The main OS program. Contains code for

most services. Always in primary memory

•Device Drivers

–Programs that provide a simple, consistent

interface to I/O devices

–Typically part of the kernel

Operating Systems 1-24

Some OS Concepts

•Program

–A static machine code program on a disk

•Process

–A program in execution.

–The collection of OS data structures and

resources owned by a program while it is

running.

5

Operating Systems 1-25

Producing an Executable under an OS

Source Code Object File

Compile

Libraries and

other Object files

Link

Executable

Operating Systems 1-26

#include <sys/types.h>

#include <dirent.h>

#include "ourhdr.h"

int main(int argc, char *argv[])

{

DIR *dp;

struct dirent *dirp;

if (argc != 2)

 err_quit("a single argument (the directory name) is required");

if ((dp = opendir(argv[1])) == NULL)

 err_sys("can't open %s", argv[1]);

while ((dirp = readdir(dp)) != NULL)

 printf("%s\n", dirp->d_name);

closedir(dp);

exit(0);

}

Functions supplied by system

libraries.

These functions will contain a

trap instruction.

Use of system calls:

A Simple Program to print a directory

Operating Systems 1-27

RAM

User Program #1

User Program #2

trap 002

Kernel

1

2

3

System/Kernel Mode

User Mode

1. Program performs trap

2. OS determines service

 number

3. Service is located and

 executed.

4. Control returns to user

 program.

4

Based on a diagram from

“Modern Operating Systems” by

Andrew Tanenbaum.

What is a Trap? Passing control to OS

Operating Systems 1-28

Steps in Making a System Call

There are 11 steps in making the system call :

Count=read (fd, buffer, nbytes)

Unsuccessful call will set count to -1.

Operating Systems 1-29

System call execution

• If the system call cannot execute the returned value
is set to -1 and a errno is put in a global variable, so
always check the the returned value…

• Calling program pushes the parameters onto a stack

• Then the lib procedure is called, which puts the
corresponding system call number in a table the OS
expects and then call a TRAP instruction to switch
from user mode to kernel mode

• Then the kernel executes the system call handler,
after which the control may be passed back to the
user program…

• The kernel then clears the stack from the remains of
the system call which has just been completed

Operating Systems 1-30

System call execution

• POSIX-Portable Operating System
Interface for Unix has about 100
system calls

• MSFT decouples the system calls and
application interface, known as Win32
API (Application Program Interface).
Win32 API has thousands of calls,
some of which may call system calls,
most of which execute in user mode…

6

Operating Systems 1-31

Some System Calls For Process Management

Operating Systems 1-32

Some System Calls For File Management

Operating Systems 1-33

Some System Calls For Directory Management

Operating Systems 1-34

Some System Calls For Miscellaneous Tasks

Operating Systems 1-35

A System Call Example

• A stripped down shell:
• /* shell is the command interpreter of OS */

#define TRUE 1

while (TRUE) { /* repeat forever, TRUE is set to 1 */

 type_prompt(); /* display prompt */

 read_command (command, parameters) /* input from terminal */

if (fork() != 0) { /* fork off child process */

 /* Parent code */

 waitpid(-1, &status, 0); /* wait for child to exit */

} else {

 /* Child code */

 execve (command, parameters, 0); /* execute command */

 }

}

Operating Systems 1-36

System Calls: Process execution structure

• Processes have three segments: text, data, stack

7

Operating Systems 1-37

System Calls: a short list UNIX system calls

 Some Win32 API calls with corresponding UNIX system calls

